
Statistical Parsing with a Context-free Grammar and WordStatistics �Eugene CharniakDepartment of Computer Science, Brown Universityec@cs.brown.eduAbstractWe describe a parsing system based upon a languagemodel for English that is, in turn, based upon assign-ing probabilities to possible parses for a sentence. Thismodel is used in a parsing system by �nding the parsefor the sentence with the highest probability. This sys-tem outperforms previous schemes. As this is the thirdin a series of parsers by di�erent authors that are simi-lar enough to invite detailed comparisons but di�erentenough to give rise to di�erent levels of performance,we also report on some experiments designed to iden-tify what aspects of these systems best explain theirrelative performance.IntroductionWe present a statistical parser that induces its gram-mar and probabilities from a hand-parsed corpus (atree-bank). Parsers induced from corpora are of inter-est both as simply exercises in machine learning andalso because they are often the best parsers obtainableby any method. That is, if one desires a parser thatproduces trees in the tree-bank style and that assignssome parse to all sentences thrown at it, then parsersinduced from tree-bank data are currently the best.Naturally there are also drawbacks. Creating therequisite training corpus, or tree-bank, is a Herculeantask, so there are not many to choose from. (In thispaper we use the Penn Wall Street Journal Treebank[6].) Thus the variety of parse types generated by suchsystems is limited.At the same time, the dearth of training corporahas at least one positive e�ect. Several systems nowexist to induce parsers from this data and it is pos-sible to make detailed comparisons of these systems,secure in the knowledge that all of them were designedto start from the same data and accomplish the sametask. Thus an unusually large portion of this paperis devoted to the comparison of our parser to previous�This research was supported in part by NSF grantIRI-9319516 and by ONR grant N0014-96-1{0549. Copy-right c
1997, American Association for Arti�cial Intelli-gence (www.aaai.org). All rights reserved.

Corporate pro�ts rose .adj:corporate n:pro�ts v:rose fpunc:.np:pro�ts vp:roses:roseFigure 1: Parse of a simple sentencework, in which we attempt to trace performance di�er-ences to particular decisions made in the constructionof these parsing systems.The Probabilistic ModelThe system we present here is probabilistic in that itreturns the parse � of a sentence s that maximizesp(� j s). More formally, we want our parser to returnP(s) whereP(s) = argmax� p(�; s)p(s) = argmax� p(�; s) (1)Thus the parser operates by assigning probabilitiesp(�; s) to the sentence s under all its possible parses� (or at least all the parses it constructs) and thenchoosing the parse for which p(�; s) is highest.To illustrate how our model assigns a probabilityto a sentence under a given parse, consider the sen-tence \Corporate pro�ts rose." under the parse shownin Figure 1. We can think of a parse as a bag ofcontext-free grammar rules specifying how each parseconstituent is expanded. Indeed, this is exactly howour system considers it, since it uses a context-freegrammar and �nds a set of (we hope) high-probabilityparses for the sentence. In what follows we pretendthat the probabilitymodel is applied separately to eachpossible parse. In actuality this is too ine�cient; oncethe set of parses has been found their probabilities aredetermined in one bottom-up pass.Returning to Figure 1, at each non-terminal nodewe note the type of node (e.g., a noun-phrase, np) and

the head of the constituent (its most important lexi-cal item). For example, the head of an np is the mainnoun, the head of a vp is the main verb, and the headof an s is the head of the sentence's vp. Formally,the head is assigned by a deterministic function of thegrammar rule used to make up the constituent. Sinceheads of constituents are often speci�ed as heads ofsub-constituents (e.g., the head of the s is the head ofthe vp), heads are determined bottom up. Note thatif a constituent can be created using several di�erentrules, it may have several heads | but only one forany particular parse of the sentence. We are concernedwith the constituent heads because of the common lin-guistic intuition that the forms of a constituent andits subconstituents are determined more by the con-stituent's head than any other of its lexical items.Given the heads for each constituent, it is possible todetermine the probability of all parses of a sentence ineither a top-down or a bottom-up fashion. Bottom-upis more e�cient and is used in the program. Top-downis more intuitive, and we use that method here.Suppose that we have worked our way top down andare now about to determine the probability of a con-stituent, say the np \Corporate pro�ts." This proceedsby �rst determining the probability of its head, thenthe probability of the form of the constituent giventhe head, and �nally recursing to �nd the probabili-ties of sub-constituents. Consider the �rst of these |computing the probability of the head s given all theinformation previously established about the sentence.We assume that s is dependent only on its type t, thetype of the parent constituent l, and the head of theparent constituent h. Thus we use p(s j h; t; l). Forthe head \pro�ts" of the np \Corporate pro�ts" thiswould be: p(pro�ts j rose; np; s). That is, we computethe probability that a np is headed by \pro�ts" giventhat it is a np and that the constituent above it is ans headed by the lexical item \rose."This is only an approximation of the true dependen-cies, but it is also already so speci�c a probability thatwe have no real chance of obtaining the data empiri-cally. Thus we approximate p(s j h; t; l) as follows:p(s j h; t; l) = �1(e)p̂(s j h; t; l) (2)+�2(e)p̂(s j ch; t; l)+�3(e)p̂(s j t; l) + �4(e)p̂(s j t)Here and in what follows p̂ denotes a distribution ob-tained empirically from the training data. Equation2 can thus be characterized as a smoothing equationemploying (to a �rst approximation) the deleted in-terpolation method for smoothing. Equation 2 di�ersfrom standard deleted interpolation in how the inter-polation parameters �i(e) are computed. The e here isan estimate, given the amount of training data used, ofhow often one would expect the particular concurrenceof events, e.g., given the amount of training data used,how many times we should see \pro�ts" as the headof an np under an s headed by \rose." Our method is

described in [2] and is not discussed further here.The other aspect of Equation 2 that is not standarddeleted interpolation is the term p̂(s j ch; t; l). The ideahere is to cluster the heads h according to how theybehave in p̂(s j h; t; l) and then compute the probabilityof s based not on the head of the parent, h, but on h'scluster ch. We do not describe the clustering methodhere except to note that it uses a scheme somethinglike that in [7].To give some idea of how Equation 2 works in prac-tice, we give here the values of the various empiricaldistributions used therein when estimating the prob-ability of \pro�ts" given \rose" p(prf j rose; np; s) andof \corporate" given \pro�ts" p(crp j prf; adj; np).p(prf j rose; np; s) p(crp j prf; adj; np)p̂(s j h; t; l) 0 0.2449p̂(s j ch; t; l) 0.00352223 0.0149821p̂(s j t; l) 0.0006274 0.00533p̂(s j t) 0.000556527 0.004179For example, the probability of \pro�ts" given onlythat it is the head of a np is .00056. If we add the con-ditioning information that it is under an s node (whichalmost always means the np is the subject of the sen-tence), the probability is slightly higher. If we add thefact that the main verb is \rose" the observed proba-bility is zero, indicating that the training corpus didnot have a sentence with \pro�ts" as the subject of\rose." On the other hand, if we consider the clusterof verbs similar to \rose," \pro�ts" was a reasonablycommon subject, with a relatively high probability of.0035. The various probabilities for \corporate" areeven more orderly | as we add more conditioning in-formation, the observed probability is always higher.Now we turn to the second major probability in ourmodel, the probability of the form of the constituentgiven its head, or more formally, the probability thata constituent c is expanded using the grammar rule rgiven that c is of type t, is headed by h, and has parentof type l, p(r j h; t; l). We smooth this probability usingdeleted interpolation with the formulap(r j h; t; l) = �1(e)p̂(r j h; t; l) (3)+�2(e)p̂(r j h; t) + �3(e)p̂(r j ch; t)+�4(e)p̂(r j t; l) + �5(e)p̂(r j t)As an example of how this works in practice, considerthe probability of the grammar rule np ! adj plural-n(as used in the np \corporate pro�ts") and how it variesdepending on the conditioning events:p̂(r j h; t; l) p̂(r j h; t) p̂(r j ch; t) p̂(r j t; l) p̂(r j t)0.1707 0.1875 0.1192 0.0176 0.0255Because this is a relatively common example, we seethat with two small exceptions the more precise theconditioning events, the higher the probability.

The AlgorithmWe now consider in more detail how the probabilitymodel just described is turned into a parser.Before parsing we train the parser using the pre-parsed training corpus. First we read a context-freegrammar (a tree-bank grammar) o� the corpus, as de-scribed in [3]. We then collect the statistics used tocompute the empirically observed probability distribu-tions needed for Equations 2 and 3.We parse a new (test) sentence s by �rst obtaininga set of parses using relatively standard context-freechart-parsing technology. No attempt is made to �ndall possible parses for s. Rather, techniques describedin [1] are used to select constituents that promise tocontribute to the most probable parses, where parseprobability is measured according to the simple proba-bilistic context-free grammar distribution p(r j t). Be-cause this is not the o�cial distribution described byEquations 2 and 3, we cannot just �nd the most proba-ble parse according to this distribution, but the schemedoes allow us to ignore improbable parses. The result-ing chart contains the constituents along with informa-tion on how they combine to form parses.We next compute for each constituent in the chartthe probability of the constituent given the full distri-butions of Equations 2 and 3.1 The parser then pullsout the Viterbi parse (the parse with the overall high-est probability) according to the full distribution as itschoice for the parse of the sentence. In testing this iscompared to the tree-bank parse as described in thenext section.In one set of tests we attempted to assess the util-ity of unsupervised training so we used the parser justoutlined to parse about 30 million words of unparsedWall Street Journal text. We treated the Viterbi parsesreturned by the parser as \correct" and collected sta-tistical data from them. This data was combined withthat obtained from the original parsed training data tocreate new versions of the empirical distributions usedin Equations 2 and 3. This version also used class in-formation about the attachment points of pps. Thee�ect of this modi�cation is small (about .1% averageprecision and recall) and discussion is omitted here.ResultsWe trained our parser on sections 02-21 (about one mil-lion words) of the Penn Wall Street Journal Treebankand tested the parser on section 23 (50,000 words).Preliminary testing was done on section 24, to avoidrepeated testing of section 23 with the risk of uncon-1For e�ciency we �rst reduce the number of constituentsby computing p(c j s) and removing from consideration anyc for which this is less than .002. The equations for thisare reasonably standard. Again, this is according to thedistribution p(r j t). The ability to do this is the reason we�rst compute a set of parses and only later apply the fullprobability model to them.

sciously �tting the model to that test sample. This ar-rangement was chosen because it is exactly what wasused in [4] and [5]. The next section compares ourresults to theirs.After training we parsed the testing corpus using�ve versions of our system. In each case the programpulled out the most probable parse according to theprobability model under consideration. The modelsfor which we tested the system are: PCFG (no statis-tics other than the probabilities associated with eachprobabilistic context-free rule p(r j t)),Minimal (addsp̂(r j h; t; l) to the probability mix),No Classes (usesall of the probabilities in Equations 2 and 3 exceptp̂(r j ch; t; l) and p̂(s j ch; t; l)), Basic (uses Equations2 and 3) and Full (the basic model plus statistics basedon unsupervised learning on about 30 million words ofWall Street Journal text).We give results according to seven �gures of merit:LR (labeled recall | the number of correct non-terminal labeled constituents divided by the numberof such constituents in the tree-bank version) LR2(LR, but using the slightly idiosyncratic de�nition ofcorrectness used in [4]), LP (labeled precision | thenumber of correct non-terminal labeled constituents di-vided by the number of such constituents produced bythe parser), LP2 (LP, but using the de�nition of cor-rectness from [4]), CB (the average number of cross-brackets per sentence), 0CB (percentage of sentenceswith zero cross-brackets), and 2CB (percentage of sen-tences with � 2 cross-brackets).A non-terminal labeled constituent produced by theparser is considered correct if there exists a constituentin the tree-bank version with (1) the same startingpoint, (2) the same ending point, and (3) the same la-bel (e.g., vp). To allow better comparison to previouswork, we also give results using the slightly di�erentde�nition of correctness used by Collins and Magerman(see LP2 and LR2). This di�ers from the standard def-inition in that (a) the non-terminal labels advp and prtare considered the same and (b) mistakes in positionthat only put punctuation in the wrong constituent arenot considered mistakes. Since anything that is correctaccording to the traditional measure is also correct ac-cording to this less obvious one, we would expect theLP2 and LR2 to be slightly higher than LP and LR. Asin previous work, we give our results for all sentencesof length � 40 and also those of length � 100.The results are shown in Figure 2. In the next sec-tion we compare these results to those achieved by pre-vious systems. For now we simply note a few points.First, most of this data is as one would have expected.Restricting consideration to sentences of length � 40improves performance, though since almost all the sen-tences are in this length category, the di�erence is notlarge. Second, as we give the system more informationits performance improves. Third, the di�erences be-tween the two labeled constituent precision measures(LP and LP2) and those for labeled constituent recall

LR LR2 LP LP2 CB 0CB 2CB� 40 words (2245 sentences)PCFG 71.2 71.7 75.3 75.8 2.03 39.5 68.1Minimal 82.9 83.4 83.6 84.1 1.40 53.2 79.0No Cls 86.2 86.8 85.8 86.4 1.14 59.9 83.4Basic 86.3 86.8 86.6 87.1 1.09 60.7 84.0Full 86.9 87.5 86.8 87.4 1.00 62.1 86.1� 100 words (2416 sentences)PCFG 70.1 70.6 74.3 74.8 2.37 37.2 64.5Minimal 82.0 82.5 82.6 83.1 1.68 50.6 75.7No Cls 85.4 86.0 84.9 85.5 1.37 57.2 80.6Basic 85.5 86.0 85.6 86.2 1.32 57.8 81.1Full 86.1 86.7 86.0 86.6 1.20 59.5 83.2Figure 2: Results for several versions of the parsingmodel(LR and LR2) are small and almost unvarying, alwaysbetween .5 and .6%. Fourth, all of the performancemeasures tell pretty much the same story. That is,they all go up and down together and with only one ortwo exceptions they go up by the same relative amount.One aspect of this data might not have been antici-pated. It is clear that adding a little bit of information(the \minimal" system) improves performance quite abit over a pure PCFG, and that all additions over andabove are much less signi�cant. For example, considerthe sequence of values for (lp2 + lr2)/2:PCFG Minimal No Classes Basic Full73.75 83.75 86.6 86.95 87.45We can see that grouping words into classes for pur-poses of smoothing adds relatively little (.35%), as dothe more heroic methods such as unsupervised learningon 30 million words of text (.5%). This seems to sug-gest that if our goal is to get, say, 95% average labeledprecision and recall, further incremental improvementson this basic scheme may not get us there.Previous WorkWhile the quantity of work on English parsing is huge,two prior pieces of work are su�ciently close to thatdescribed here that it behooves us to concentrate onthat work at the expense of all the rest. In particu-lar, we designed our experiments to conform exactlyto those performed on two previous statistical parsingsystems that also used the Penn Wall Street JournalTreebank to train parsers, those of Magerman [5] andCollins [4]. Thus our training and testing data are ex-actly the same sets of sentences used in this previouswork, as are the testing measurements. In this sectionwe describe these earlier parsers, and then describe ex-periments designed to shed light on the performancedi�erences among the three systems.The three systems have much in common. In allcases the program starts with relatively little knowl-edge of English and gathers the statistics it needs from

the training corpus. In each case the system has a pre-de�ned notion of the lexical head of a phrase and usesthis information in its statistics. Furthermore, all threesystems seem to restrict head information to two levels| i.e., they have statistics that take into considerationthe head of a constituent and the head of its parent,but not the head of the grandparent. Finally, all threesystems pick as the correct parse the parse with thehighest probability according to the smoothed proba-bility distribution they de�ne.Before discussing the di�erences among the threesystems, let us �rst note their performance:LR2 LP2 CB 0 CB 2CB� 40 words (2245 sentences)Magerman 84.6 84.9 1.26 56.6 81.4Collins 85.8 86.3 1.14 59.9 83.6Charniak 87.5 87.4 1.0 62.1 86.1� 100 words (2416 sentences)Magerman 84.0 84.3 1.46 54.0 78.8Collins 85.3 85.7 1.32 57.2 80.8Charniak 86.7 86.6 1.20 59.5 83.2It seems fair to say that no matter what measure oneconsiders, the three systems are at roughly the samelevel of performance, though clearly later systems workbetter than earlier ones and the 18% error reductionof our system over Magerman's is not negligible.We now consider the di�erences among the three sys-tems, with particular emphasis on teasing out whichof them might be responsible for the di�erent levels ofperformance. The most obvious di�erences are: (1)What overall probability is calculated? (2) How ispart-of-speech tagging done? (3) To what degree doesthe system use an explicit grammar? (4) What statis-tics are gathered? (5) How are the statistics smoothed?and (6) Was unsupervised training used? The resultsin Figure 2 show that unsupervised training accountsfor about .4% of the the di�erence between the per-formance of our system and the other two. However,the results there clearly indicate that there must beother di�erences as well, since even without unsuper-vised training our system outperforms the earlier ones.In the remainder of this section we look at the otherdi�erences. We argue that of all of them, those thathave the most impact on performance are statistics andsmoothing, with statistics being the most importantand smoothing important only insofar as it a�ects thestatistics gathered.As noted above, the system described here computesp(s; �). Both Magerman and Collins, however, com-pute p(� j s). The statistic we compute is, of course,more general than that used by Magerman and Collins,in that given p(s; �) one can easily compute p(� j s),but not vice versa. The di�erence in statistic could beimportant if one were going to attach these parsing sys-tem to a speech- or character-recognition system anduse the parser as a language model. Our statistical cal-culations could compute the overall probability of thesentence, the statistic computed by a language model,

whereas the other two could not. On the other hand,as long as the only intended use is parsing, this di�er-ence should have no e�ect since in all cases one picksas the best parse that with the highest probability forthe sentence.If we turn to part-of-speech tagging, the di�erencesare perhaps more apparent than real. Our system hasno explicit tagging step. If a word could be more thanone part of speech, the system considers all of themand the \correct" tag is simply the one that appears inthe \correct" parse. Magerman has an explicit taggingstep, but his system stores all possible taggings alongwith their probabilities and considers all of them whendeciding on the best parse. Thus his system too de�nesthe correct tag as the one used in the correct parse.Collins describes his system as having a distinct tag-ging phase producing a single tag that is used duringthe rest of the parse. This would be a real distinction.However, the version of his system that worked best(and produced the results reported above) gave up onthis and instead moved to a scheme more like Mager-man's, with an explicit tagging phase, but one in whichall probabilities are kept and then integrated with allthe other probabilities a�ecting the overall probabil-ity of the sentence. It is interesting to note that thisincreased his system's average precision/recall by .6%,suggesting that pretagging is a bad idea when deal-ing with parsers performing at this level of accuracy.At any rate, all three systems are e�ectively taggingin pretty much the same way, and none of the perfor-mance di�erences are likely to be the result of tagging.The role of grammar is probably the most glaringdi�erence among the three schemes. In this regard oursystem is the most traditional, in that it is the onlyone of the three with an explicit grammar. Mager-man's system has a subcomponent that for any pos-sible constituent in a parse computes the probabilitythat this node (a) starts a new constituent, (b) endsa constituent, (c) is in the middle of a constituent, or(d) both starts and ends a (unary) constituent. Thisscheme could be thought of as, in e�ect, making upgrammar rules on the
y, but this is approximate atbest. Collins's scheme is even more radical. Includedin his probability mix is the probability that a phraseheaded by lexical item s with part of speech t is di-rectly under a phrase headed by h with non-terminallabel n. To get an idea of how far this statistic is froma grammar, observe that it contains nothing requir-ing constituents even to be continuous; Collins insteadadds this requirement to the algorithm that searchesfor the best parse.We suspect that our decision to use a formal gram-mar has both advantages and disadvantages, and thatthe net result is a wash. The advantages stem fromthe �ner level of control available using a grammar.For example, Collins in discussing of future improve-ments notes the problem of valency | how particularwords get used in particular syntactic constructions.

A canonical example is how \give" can take both a di-rect and indirect object, as in \Sue gave the boy thepizza." Other verbs, like \put", or \eat," cannot. Asbest we can tell, neither Collins nor Magerman canrepresent such facts. Our system can because it hasthe two probabilities p̂(vp ! verb np np j give) = .25and p̂(vp ! verb np np j put) = 0.Balanced against this, however, is the comparativelack of coverage of the tree-bank grammar we use.The standard assumption about tree-bank grammarsis that they lack coverage because many uncommongrammar rules are not encountered in the particularcorpus used to create the grammar. As noted in [3],this problem is not as bad as people expect, and thetests therein showed that lack of coverage was not a sig-ni�cant problem. However, in [3] parsing is done usingonly tag sequence information, which, as the PCFG re-sults in Figure 2 show, is a poor system. We estimatethat lack of coverage due to the use of a tree-bankgrammar lowers performance somewhere between .5%and 1% in both precision and recall. While this is notmuch in a program with 74% precision and recall, itlooms much larger when the program's performance is87.4% and only 1% better than its competitors. Sincethe use of a tree-bank grammar has both bene�ts andcosts, we expect that overall it comes out neutral.This leaves two important di�erences among the sys-tems, the statistics used and smoothing. We combinethese two because Magerman's system uses a particularkind of smoothing that has a signi�cant e�ect on thestatistics. Magerman's system does not use individualstatistics like those combined in our Equations 2 and 3,but rather a decision-tree scheme for smoothing. Forexample, suppose you want to label a particular non-terminal node. Rather than directly computing theprobability of a particular label given the exact localcontext, the data for which is inevitably quite sparse,his system �nds which questions about the context givethe most information about the decision and then fash-ions a decision tree around these questions. At theleaf nodes of the tree one then �nds a probability dis-tribution over the possible answers. In the case of adecision tree for labeling non-terminals, the leaf nodeswould specify the probability of all possible labels giventhe set of questions and answers that lead to that leafnode. Note that each question in the decision tree isbinary, and thus questions about individual words arerecast as questions about classes of words. Naturally,the decision tree stops long before the questions com-pletely de�ne the context in order to get the requiredsmoothing. Given the number of possible words in eachcontext, it is plausible to assume that the decision-treequestions hardly ever de�ne the words completely, butrather depend on classes of words.Collins's system uses raw word statistics and some-thing quite similar to deleted interpolation, much likeour Equations 2 and 3. On the other hand, in direct op-position to Magerman, he does not use classes of words.

Thus Collins uses nothing like the terms p̂(s j ch; t; l)and p̂(r j ch; t; l) in our Equations 2 and 3 respectively.Also, Collins never conditions an attachment decisionon a node above those being attached. Thus he hasnothing corresponding to the probability p̂(r j h; t; l),where l is the the label of the node above that beingexpanded by r.We have gone into this level of detail about theprobabilities used by the three systems because we be-lieve that these are the major source of the perfor-mance di�erences observed. To test this conjecture weperformed an experiment to see how these di�erencesmight a�ect �nal performance.As indicated in Equations 2 and 3, probabilities ofrules and words are estimated by interpolating betweenvarious submodels, some based upon classes, othersupon words. Given our belief that these probabili-ties are the major di�erences, we hypothesize that onecould \simulate" the performance of the other two sys-tems by modifying the equations in our system to bet-ter re
ect the probabilitymix used in the other systemsand then see how it performs.Thus we created two probability combinationsshown by listing the various empirical distributionsused in Equations 2 and 3 and indicating whether aparticular distribution is included or not in the Collinsmodel (indicated by a yes/no in the SimCollins col-umn) and the Magerman model (SimMagerman):SimCollins SimMagermanp̂(s j h; t; l) Yes Nop̂(s j ch; t; l) No Yesp̂(s j t; l) Yes Nop(s j t) Yes Yesp̂(r j h; t; l) No Nop̂(r j h; t) Yes Nop̂(r j ch; t) No Yesp̂(r j t; l) Yes Yesp̂(r j t) Yes YesThe basic idea is that we removed all statistics basedupon individual words in SimMagerman,while for Sim-Collins we removed the statistics based upon wordclasses, as well as p̂(r j h; t; l), which, as noted above,does not correspond to anything that Collins collects.So, for example, the table indicates that the Magermanmodel does not include p̂(r j h; t), the probability of arule r given the speci�c head h and the non-terminal tthat is being expanded (since this is a statistic condi-tioned upon a particular word).The results of these experiments are:LR2 LP2 CB 0CB 2CBMagerman 84.6 84.9 1.26 56.6 81.4SimMagerman 84.0 84.9 1.32 54.4 80.2Collins 85.8 86.3 1.14 59.9 83.6SimCollins 86.0 86.1 1.20 58.1 81.9The rows show Magerman's results, the results ofour Magerman mix, Collins' results, and our Collins

mix. So SimMagerman has labeled precision/recall of84.9/84.0, while the real system had 84.9/84.6.The correspondences are not bad and support tosome degree our conjecture that the probability mixis the major determinant of performance in the threesystems. They also suggest two other conclusions:� All else equal, statistics on individual words out-perform statistics based upon word classes, and thismay be su�cient to account for the di�erence in per-formance between Collins and Magerman.� When dealing with a training corpus of slightly un-der a million words of parsed text, it is worth col-lecting statistics on some more detailed con�gura-tions (e.g., p̂(r j h; t; l)) as well as less detailed ones(in particular, statistics based upon word classes).These statistics probably account for the di�erencein performance between Collins's system and thatdescribed here. ConclusionWe have presented a parser in which the grammarand probabilistic parameters are induced from a treebank and have shown that its performance is superiorto previous parsers in this area. We also describedan experiment that suggests that its superiority stemsmainly from unsupervised learning plus the more ex-tensive collection of statistics it uses, both more andless detailed than those in previous systems.References1. Caraballo, S. and Charniak, E. Figures ofmerit for best-�rst probabilistic chart parsing. InProceedings of the Conference on Empirical Meth-ods in Natural Language Processing . 1996, 127{132.2. Charniak, E. Expected-Frequency Interpolation.Department of Computer Science, Brown Univer-sity, Technical Report CS96-37, 1996.3. Charniak, E. Tree-bank grammars. In Proceed-ings of the Thirteenth National Conference on Ar-ti�cial Intelligence. AAAI Press/MIT Press, MenloPark, 1996, 1031{1036.4. Collins, M. J. A new statistical parser based onbigram lexical dependencies. In Proceedings of the34th Annual Meeting of the ACL. 1996.5. Magerman, D. M. Statistical decision-tree mod-els for parsing. In Proceedings of the 33rd AnnualMeeting of the Association for Computational Lin-guistics. 1995, 276{283.6. Marcus, M. P., Santorini, B.and Marcinkiewicz, M. A. Building a large an-notated corpus of English: the Penn treebank. Com-putational Linguistics 19 (1993), 313{330.7. Pereira, F., Tishby, N. and Lee, L. Distribu-tional clustering of English words. In Proceedingsof the Association for Computational Linguistics.ACL, 1993.

