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Abstract

We report experimental work on improving learning methods for probabilis-
tic context-free grammars (PCFGs). From stacked regression we borrow the
basic idea of combining grammars. Smoothing, a domain-independent method
for combining grammars, does not offer noticeable performance gains. How-
ever, PCFGs allow much tighter, domain-dependent coupling, and we show that
this may be exploited for significant performance gains. Finally, we compare
two strategies for acquiring the varying grammars needed for any combining
method. We suggest that an unorthodox strategy, “leave-one-in” learning, is
more effective than the more familiar “leave-one-out”.

1 Introduction

We are interested in ways of improving the performance of probabilistic grammars
learned from tagged text. We intend to use these grammars for language modelling,
which has applications in speech recognition, text retrieval, and the like. Language
modelling makes two demands on a grammar, first that it parse all or nearly all
sentences, and second that it assign each sentence a probability, preferably as high as
possible. We describe these goals more formally below. In the last few years, large
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corpora of text have become available online for the first time, and these, together with
the abundance of relatively cheap computation make learning probabilistic grammars
practical and even attractive.

This paper reports the results of experiments in adapting an idea from stacked
regression and extending it in a domain-dependent fashion to improve the perfor-
mance of an existing grammar learner. Wolpert [1] lays out a very general theoretical
framework for stacked regression, based on supervised learning from noise-free data.
The framework is sufficiently general that it can be reified in a number of quite dif-
ferent learning algorithms. Here we focus on the idea of combining information from
more than one generalizer, which in our case are probabilistic context-free grammars
(PCFGs). Wolpert points out that if one has gone to the trouble to build several
generalizers from a single data set, then it is almost always better to combine the
information from them, rather than, say, choosing one, as has been standard practice
with cross-validation. In the stacked regression framework this combination process
may take almost any form, some of which require an error signal (i.e., supervised
learning), and are therefore infeasible in our domain. One of the more obvious and
feasible ideas for combining generalizers is simply to average across them, and other
researchers report good results from this [2]. We can do slightly better than that, by
choosing optimal weights to smooth over our grammars.

To be more concrete, we are suggesting generating several (probabilistic) gram-
mars (; and smoothing them together. As we describe in more detail below, each
grammar defines a probability distribution over sentences Fg,, and so the smoothed
combination will likewise define a distribution. To smooth across multiple grammars,
we choose some positive weights A;, such that >~; A; = 1.0 and we define the smoothed
probability of a sentence s to be

P(s) = £ AiPa(s) (1)

We can choose the lambda; using the forward-backward algorithm [3] and some train-
ing data reserved prior to learning the grammars.

It will be noticed that this suggestion contains nothing that is domain-specific or,
for that matter, original. Provided multiple generalizers (our grammars) are available,
it could be applied anywhere. Note, however, that the mathematical arguments
from stacked regression supporting this method do not apply to our domain. These
arguments rest on assumptions concerning the construction of the generalizers, and
those assumptions, in turn, are based on a supervised model of learning. (Supervised
learning is impractical for PCFG learning, as an actual human would have to provide
the supervision.) Perhaps because these assumptions do not hold, the method does
not improve performance, as our first experiment shows.

Our real interest was not in the stock approach described above, but rather in
a domain-dependent method of combining PCFGs, essentially by “adding” them to-



gether to produce a single grammar. The resulting tighter coupling, together with an
appropriate training algorithm, results in a substantial performance increase, as we
document in our second experiment.

Finally, in our last experiment we vary the way in which the grammars are gen-
erated, in order to find the best method to use with our “adding” procedure. Rather
than varying an algorithmic parameter, we vary the data available to the learner.
This bears some similarity to “leave-one-out” cross-validation, which builds multiple
generalizers this way for the purpose of evaluating learner performance. Unlike cross-
validation, in which the aim is to select the best generalizer, our aim is to use all of
the acquired generalizers, so we find a rather different allocation of the data is more
suitable.

The rest of this paper is laid out as follows. In the next section, we describe
PCFGs, performance measures for PCFGs, and our basic PCFG induction scheme.
Following that we give results for three experiments, evaluating the generic smoothing
scheme, our domain dependent scheme, and “leave-one-in” versus “leave-one-out”
learning. Finally, we summarize the results and implications of our experiments in
the conclusion.

2 Probabilistic Context-Free Grammars

2.1 PCFG Definitions and Properties

A probabilistic context-free grammar is just an ordinary grammar with a weight, or
probability, associated with each rule. For each non-terminal, NT', the sum of weights
for all rules headed with N7 is 1.0.! A probabilistic grammar implicitly defines a
distribution over strings in its language; any string not in the language has probability
zero. Formally we write this as

Vs(s ¢ L(G) — Prg(s) =0).

A parse assigned by a PCFG is identical to the parse assigned by an ordinary,
non-probabilistic, context-free grammar. It is a tree rooted at the grammar’s start
symbol, with each interior node representing the expansion of some non-terminal by
a grammar rule, and with the parsed string distributed one symbol per leaf over the
tree’s leaves.

The probability of a parse p according to grammar G is

Prg(p) = [ Pra(r),

TED

IN.B. that one does not sum over all rules in the grammar.



where Prg(r) is the probability (weight) i assigns to rule r.
The probability of a string according to grammar G is

Prg(s)= Y Pralp)
Vpeparses(G,s)
Since our grammars are for English text, our strings will always be sentences.
The probability of a corpus of sentences, (/, according to grammar G is
Pr(C) = I] Pra(s) (2)
seC

This definition makes the standard assumption that sentences occur independently.
For convenience, most calculations are actually made in terms of the cross entropy of
a corpus, which is the negative log of its probability.

Our interest in PCFGs lies in their usefulness as language models. For language
modeling we wish to maximize our predictive ability, which means maximizing the
probability of a corpus, or, equivalently, minimizing its cross entropy. There exists a
fairly well-known algorithm [3-5] for tuning a PCFG’s probabilities to maximize the
probability of a training corpus. The important properties of this algorithm, known
as the Inside-Outside (I-O) algorithm, are that it allows unsupervised training, it
can get stuck in local maxima, it is deterministic, and it approaches the maximum
probability settings asymptotically with repeated iterations through the training data.
The I-O algorithm does not induce new rules, although it can effectively delete rules
by assigning them a probability of zero.

2.2 Performance

If our learned grammars had 100% coverage, i.e., they could be expected to parse
all sentences in a test corpus, then cross entropy would be the right performance
measure. Unfortunately, it is difficult to realize both perfect coverage and low cross
entropy, and both are desirable properties for language models. Essentially, one must
choose between inducing a very general grammar, which spreads probability thinly
over more sentences, or a grammar that parses fewer sentences, but assigns a higher
probability to the sentences that it does parse. Note that a single unparsable sentence
makes the cross entropy of the corpus infinite (because the probability is zero).

One can imagine many tradeoff functions for balancing coverage versus cross en-
tropy but it is hard to argue convincingly for any particular one. Rather than selecting
one at random, we measure our own performance in comparison with the performance
of the current industrial standard, a smoothed trigram language model®. Such mod-

ZA trigram model predicts the next word from the previous two, and assigns a probability to a
corpus as the product of the probability of all words. A smoothed trigram model combines a trigram
model with a bigram model (next word predicted from only the previous word) and a unigram model
(next word predicted by its frequency in text).



els are guaranteed to have 100% coverage and they have performed extremely well as
language models for many years. They are serious competition, rather than a straw
person.

We measure comparative performance by treating both models as components
of an overall model, which is the smoothed combination of the the two. We assign
both models an initial weight of 0.5, and tune these values using the forward-backward
algorithm on held-out test data. We measure performance as the final weight assigned
to the grammar model, and call it A\g. The final weight assigned to the trigram model
is Az = 1.0 — A¢). A Ag of 0.5 would indicate that the grammar and the trigram
performed identically well, overall.

One way to think of this is that we are assigning each sentence an equal, fixed
weight, and we are dividing that weight between the two models according to the
probability each model assigns the sentence. (Actually we use the probability times A
and Ap for the grammar and the trigram model, respectively.) Whichever model gets
the most weight is the better model. The forward-backward algorithm successively
re-estimates the weights using the lambdas, and vice-versa.

The key advantage of this measure is that it assigns a finite value to each sentence,
whereas cross entropy may assign an infinite value, as it does when a sentence is
unparsable. This makes cross entropy a “brittle” measure, as a single sentence of zero
or even near-zero probability probability can determine a grammar’s performance for
an entire corpus. Our grammar’s coverage of test data is generally around 99.2+0.5%,
so some sentences inevitably fail.

Aside from this brittleness, we regard cross entropy as the right measure, and
our As track it faithfully. Other things being equal, any change in cross entropy
will be mirrored by a change in A. If either model has superior cross entropy on
every sentence, its A will reach 1.0, indicating complete dominance. In addition, our
measure has the rather handy feature that, if the two models usually assign widely
disparate probabilities, each A may be read as the percentage of sentences for which
the corresponding model is superior. Our two models meet this condition, most of
the time, so it is a good approximate indicator for us.

2.3 PCFG induction

Stacked regression requires some existing means of induction to furnish the general-
izers it needs. We discuss our induction scheme in detail elsewhere [6]. In skeleton
form, there are two parts to PCFG induction: acquiring the rules, and setting their
probabilities. In essence, we divide the process into corresponding phases, and handle
them separately.

The rule acquisition phase is error-driven. It accepts an initial grammar, which
may be empty, called the bias, and it extends the bias to cover sentences that it



cannot initially parse. As we report elsewhere, we obtain the best performance when
we can extend the grammar incrementally, adding fewer and shorter rules first. We
get this effect by sorting the input sentences, shortest first.

Our procedure does not guarantee that a sentence can be parsed even after rule
acquisition. (Generally speaking, however, coverage of training data is > 99% after
this learning, so there are few sentences for which it fails.) If the learner fails, that is,
if the sentence remains unparsable, then no suggested rules are added to the grammar.

There are two ways in which learning can fail. First, it could fail because our
constraints on new rules simply do not allow some necessary rule or rules to be
suggested. This seldom happens, as our constraints have migrated away from being
rigid, “yes-or-no” rules towards probabilistic preferences.

Another way in which learning can fail is that so many new rules are generated
that the parser is effectively swamped. It is not hard for a single sentence to generate
thousands of new rules, doubling the size of the grammar, although clearly only very
limited information can be gleaned from any one sentence.) In this case, the learner
aborts, discards the new rules, and indicates a failure. This bias the learner against
learning from long sentences, which seems reasonable, as long sentences are harder to
learn from.

The second phase, setting the probabilities, is a straightforward deployment of
the Inside-Outside algorithm.

3 Results

Results reported in this section all use the basic induction algorithm described above,
seeded with a hand-built bias grammar containing 600 rules. The training data used
was a 300,000 word subset of the Brown Corpus of Tagged English [7], a collection
of articles, excerpts from books, and the like. Each word is tagged with its part of
speech, e.g., noun, verb, etc. OQur grammars operate on the tags alone, ignoring the
words entirely. Our subset of the corpus was created by filtering out all sentences that
had more than 23 words or had undesirable words such as parentheses, headlines, or
foreign words. A 10,000 word subset was reserved for testing.

For comparison purposes, we provide the average performance of the basic induc-
tion algorithm. We use the average because our grammar learning is dependent on
sentence ordering, or, in other words, is not deterministic without a completely fixed
sentence ordering. Consider two sentences of a given length, say A and B. Suppose
that for A our learner will suggest rules that are also sufficient to parse B, but for
B the learner would suggest a different set. What rules the grammar ends up with
depends on which sentence occurs first. In figure 1 we give average performance (the
A) of the basic induction scheme, and the individual performance on 10 learning runs
over randomized orderings of the corpus. (The shortest-first ordering was still, of
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Figure 1: Basic Learning, showing individual runs from randomized orderings and
overall average.



‘ H lambda ‘ lambda variance ‘ cross entropy | coverage % ‘

basic 0.53235 | 0.000869081 2.74561 98.96
smoothed 0.52857 | 0.000084159 2.7476 99.35
added, 10 segs, l-o-o || 0.61753 | 0.000079539 2.72856 99.36
added, 10 segs, l-o-1 || 0.657562 | 0.000722075 2.7175 99.56
added, 100 segs, l-o-1 || 0.72071 | 0.00005106 2.7017 99.66
added, 25k segs, l-o-1 || 0.71114 | 0.0 2.70285 99.72

Figure 2: Comparison of smoothing versus unsmoothed grammars

course, preserved.) In all cases, we evaluate performance immediately after learning
and after 10 iterations of training by the Inside-Outside algorithm, which in our ex-
perience is enough to reveal any systematic differences among grammars, although
performance may continue to climb with further iterations.

Figure 1 should give one a feel for the behavior of our grammars through the
training process. In general, performance immediately following learning is poor, and
increases most rapidly for the first couple of training iterations. Performance curves
occasionally cross, but there are no wild differences in the shape of the curves, nor
are there dips indicating overtraining. Overall, there is more variation in performance
than we would like, and it seems largely connected with the coverage of the learned
grammar. Coverage ranges from 98.68 to 99.23% of total words parsed for these
grammars, and is almost perfectly correlated to increased performance.

3.1 Experiment 1

Figure 2 summarizes the results for all our experiments. All results are averages
from 10 runs over randomized orderings, except as otherwise noted below. The en-
try headed “smoothed” gives the graph of results for our “replication” of ordinary
stacked regression, or at least our unsupervised learning approximation to it. For
this experiment we divided the corpus into 10 equal sized pieces. Nine of these pieces
were used to generate grammars. The different grammars were created by vary-
ing the data available to each learning run. In each case, one of the 9 remaining
pieces of training data was left out, so the learner saw only 80% of the data. Each
grammar was then trained once, using the same 90% as was used for learning. The
grammars were trained only once in order to allocate training time comparable to 10
passes with a single grammar. Finally, smoothing parameters were chosen using the
forward-backward algorithm on the reserved 10% of the data.

The first two lines of the table in figure 2 show that the smoothed grammars do
not perform better than the “basic” scheme of learning over the whole corpus all at



once. Actually, they perform somewhat worse, but not significantly so.

3.2 Experiment 2

As we said earlier, our real hope for performance improvement lay in the idea of
“adding” grammars together, so that rules distributed among the different grammars
can cooperate in parsing a sentence. The technique relies on information gleaned by
the Inside-Outside algorithm, which provides a count for each rule, indicating how
many times it is used. [-O works by alternately using the rule probabilities and the
training data to estimate the counts, and then re-estimating the probabilities from
the counts. For our purposes, the key property of the counts is that they can act as a
common currency among grammars. Rule probabilities, which are the most obvious
alternative, lack this property of interchangeability, making them unsuitable for our
purpose.
We add grammars together, then, by adding the rule counts.

Definition 1 The sum of n grammars, designated SG, is the grammar created by
summing the rule counts over the n grammars as follows.

count(SG,r) =" count(Gi,r)

where count maps the rule r to its count in grammar G.

It a rule does not appear in some grammar, it has a count of zero. Probabilities for
the new grammar are calculated from the counts, using the same equation that the
Inside-Outside algorithm relies on. For a given non-terminal, NT', and some string
of terminals and non-terminals, o', the probability of the rule NT — «' can be
calculated from the counts as follows.

Pre(NT — o') = count(NT — o')/ Y count(NT — o) (3)

In this experiment we added together the 9 untrained grammars generated in
experiment 1, and then trained them 10 times. Results are shown in figure 2 under
the entry “added, 10 segs, 1-0-0”, for adding the grammars, splitting the data into 10
segments, and “leave-one-out” rule induction. This penalizes the summing technique,
as it has no chance to learn on 10% of the data, but as the table shows, performance
is still superior.

3.3 Experiment 3

In this experiment we alter the way we allocate the training data to learn the varying
grammars that we subsequently add together. While the “leave-one-out” strategy of
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Figure 3: Performance of leave-one-in learning, for various segmentation values.

learning has a long and honorable history in machine learning, and it is a very natural
starting point, it does not seem the most promising for our problem. It is computa-
tionally expensive and it does not scale well. By this we mean that increasing the
segmentation, i.e., the number of ways one divides the data, leave-one-out produces
grammars that look more and more alike, and, as variation appears to be essential
for our needs, this is counter-productive. Instead we take the opposite approach to
leave-one-out, and keep only a single segment for learning, rather than all but one.
As before, we iteratively train the grammars only after they are added, as it is more
efficient to do so after, when a single pass through the data trains all new rules. Under
this scheme, which we call “leave-one-in”, increasing the segmentation will tend to in-
crease the variation among grammars. Moreover, the grammars are cheaper to learn,
as fewer sentences are processed for each. Lastly, under leave-one-in, more sentences
contribute rules at a given segmentation number; in the limit, when one increases the
segmentation to the corpus size, all sentences get a chance to contribute rules. In
contrast, under leave-one-out some sentences may never trigger learning, and so will
never suggest rules, under any segmentation. Figure 3 shows results of leave-one-in
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learning at various segmentation settings, up to the limit case of segmenting the cor-
pus into one-sentence chunks. As the figure shows, performance does not increase up
to the limit case, but appears to level off around a segmentation of 100. Our present
belief, as yet untested, is that this results from the loss of ordering information at
very high segmentations.

The loss of ordering information comes about because each segment has very few
sentences. This, in turn, means that the grammar cannot develop incrementally.
On the other hand, it also reduces the variance among grammars generated from
different orderings, as the variance column in figure 2 shows. In the limit case, there
is no variation at all, as there is zero ordering information. We intend to further
explore both the levelling off in performance and the benefits from ordering in the
future.

4 Conclusion

We have presented positive results from experiments in borrowing an idea from
stacked regression and adapting it to our own domain. Our experiments do not
show promising results from generic smoothing over multiple grammars, but merging
them provides the synergy we were hoping for. Grammar merging relies on variety
among the constituent grammars, which implies that “leave-one-out” learning will not
provide much mileage. For our application, “leave-one-in” is both computationally
cheaper and more thorough in extracting information, as the learning is error-driven.

One issue we have not discussed so far is the relative CPU cost of the various
schemes. The current version of the basic learning scheme takes about 7 hours for rule
acquisition and 1.5 hours for each training iteration. Since rule acquisition involves
the same parsing as training, this means that about 5.5 hours are spent purely learning
rules. The bad news is that for small segmentation levels, up to around 15, say, the
increase in CPU cost is linear, i.e., it takes about 10 times longer to learn the rules
when the segmentation is 10, whether the learning is leave-one-out or leave-one-in.
(Training the rule probabilities remains about the same, as segmentation has no effect
on training. The only increase in time comes from the increase in grammar size that
comes with increased segmentation.) The reason is that rule learning is error-based,
and for small segmentation levels, the error rate per segment does not significantly
differ from the error rate for the basic, unsegmented learner. At high segmentation
levels, say 100 and up, leave-one-out and leave-one-in behave differently. Leave-one-
out continues to climb linearly in cost, as each learning pass comes closer to processing
all of the data. For leave-one-in learning, the error rate per segment begins to drop,
so performance cost likewise drops to less than linear. Note, also, that leave-one-out
learning parses the entire corpus approximately N — 1 times at a segmentation of V,
whereas leave-one-in parses it only once.
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In our own environment, we have all the data available in batch form, and enough
computers to handle up to about 100 segments in parallel. This allows for very fast
experimentation. In an online environment, one would not expect to have either these
resources, or all the data available at once. Our results suggest a strategy such as
the following would be effective even in this more constrained environment. Incoming
data should be processed in chunks of a few hundred sentences. (For our data set, a
segmentation of 100 means each learner sees about 250 sentences.) Sort the sentences,
and use the basic learner and the bias grammar to acquire new rules. The learned
grammar, which will use the new rules, is kept separate at all times. The new rules
are added after learning, and then the I-O algorithm is run over the learned grammar
and the new data. [-O will compute new rule counts, which periodically should be
used to re-estimate the rule probabilities.

This strategy allows some incremental development from the chunking; it puts
all rules in a single grammar to reap the benefits of cooperation; and it maintains a
relatively high error-rate to drive continued learning. While overall the learning must,
inevitably, be slower under this regime, only a few thousand sentences should suffice
to reach reasonable performance, and the scheme has the advantage of accomodating
arbitrarily large data sets.
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