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Combining Grammars forImproved LearningGlenn CarrollEugene Charniak �Department of Computer ScienceBrown UniversityProvidence RI 02912February 17, 1994AbstractWe report experimental work on improving learning methods for probabilis-tic context-free grammars (PCFGs). From stacked regression we borrow thebasic idea of combining grammars. Smoothing, a domain-independent methodfor combining grammars, does not o�er noticeable performance gains. How-ever, PCFGs allow much tighter, domain-dependent coupling, and we show thatthis may be exploited for signi�cant performance gains. Finally, we comparetwo strategies for acquiring the varying grammars needed for any combiningmethod. We suggest that an unorthodox strategy, \leave-one-in" learning, ismore e�ective than the more familiar \leave-one-out".1 IntroductionWe are interested in ways of improving the performance of probabilistic grammarslearned from tagged text. We intend to use these grammars for language modelling,which has applications in speech recognition, text retrieval, and the like. Languagemodelling makes two demands on a grammar, �rst that it parse all or nearly allsentences, and second that it assign each sentence a probability, preferably as high aspossible. We describe these goals more formally below. In the last few years, large�This research was supported in part by NSF contract IRI-8911122 and ONR contract N0014-91-J-1202. 1



corpora of text have become available online for the �rst time, and these, together withthe abundance of relatively cheap computation make learning probabilistic grammarspractical and even attractive.This paper reports the results of experiments in adapting an idea from stackedregression and extending it in a domain-dependent fashion to improve the perfor-mance of an existing grammar learner. Wolpert [1] lays out a very general theoreticalframework for stacked regression, based on supervised learning from noise-free data.The framework is su�ciently general that it can be rei�ed in a number of quite dif-ferent learning algorithms. Here we focus on the idea of combining information frommore than one generalizer, which in our case are probabilistic context-free grammars(PCFGs). Wolpert points out that if one has gone to the trouble to build severalgeneralizers from a single data set, then it is almost always better to combine theinformation from them, rather than, say, choosing one, as has been standard practicewith cross-validation. In the stacked regression framework this combination processmay take almost any form, some of which require an error signal (i.e., supervisedlearning), and are therefore infeasible in our domain. One of the more obvious andfeasible ideas for combining generalizers is simply to average across them, and otherresearchers report good results from this [2]. We can do slightly better than that, bychoosing optimal weights to smooth over our grammars.To be more concrete, we are suggesting generating several (probabilistic) gram-mars Gi and smoothing them together. As we describe in more detail below, eachgrammar de�nes a probability distribution over sentences PGi , and so the smoothedcombination will likewise de�ne a distribution. To smooth across multiple grammars,we choose some positive weights �i, such thatPi �i = 1:0 and we de�ne the smoothedprobability of a sentence s to beP (s) =Xi �iPGi(s) (1)We can choose the lambdai using the forward-backward algorithm [3] and some train-ing data reserved prior to learning the grammars.It will be noticed that this suggestion contains nothing that is domain-speci�c or,for that matter, original. Provided multiple generalizers (our grammars) are available,it could be applied anywhere. Note, however, that the mathematical argumentsfrom stacked regression supporting this method do not apply to our domain. Thesearguments rest on assumptions concerning the construction of the generalizers, andthose assumptions, in turn, are based on a supervised model of learning. (Supervisedlearning is impractical for PCFG learning, as an actual human would have to providethe supervision.) Perhaps because these assumptions do not hold, the method doesnot improve performance, as our �rst experiment shows.Our real interest was not in the stock approach described above, but rather ina domain-dependent method of combining PCFGs, essentially by \adding" them to-2



gether to produce a single grammar. The resulting tighter coupling, together with anappropriate training algorithm, results in a substantial performance increase, as wedocument in our second experiment.Finally, in our last experiment we vary the way in which the grammars are gen-erated, in order to �nd the best method to use with our \adding" procedure. Ratherthan varying an algorithmic parameter, we vary the data available to the learner.This bears some similarity to \leave-one-out" cross-validation, which builds multiplegeneralizers this way for the purpose of evaluating learner performance. Unlike cross-validation, in which the aim is to select the best generalizer, our aim is to use all ofthe acquired generalizers, so we �nd a rather di�erent allocation of the data is moresuitable.The rest of this paper is laid out as follows. In the next section, we describePCFGs, performance measures for PCFGs, and our basic PCFG induction scheme.Following that we give results for three experiments, evaluating the generic smoothingscheme, our domain dependent scheme, and \leave-one-in" versus \leave-one-out"learning. Finally, we summarize the results and implications of our experiments inthe conclusion.2 Probabilistic Context-Free Grammars2.1 PCFG De�nitions and PropertiesA probabilistic context-free grammar is just an ordinary grammar with a weight, orprobability, associated with each rule. For each non-terminal, NT , the sum of weightsfor all rules headed with NT is 1.0.1 A probabilistic grammar implicitly de�nes adistribution over strings in its language; any string not in the language has probabilityzero. Formally we write this as8s(s =2 L(G)! PrG(s) = 0):A parse assigned by a PCFG is identical to the parse assigned by an ordinary,non-probabilistic, context-free grammar. It is a tree rooted at the grammar's startsymbol, with each interior node representing the expansion of some non-terminal bya grammar rule, and with the parsed string distributed one symbol per leaf over thetree's leaves.The probability of a parse p according to grammar G isPrG(p) = Yr2pPrG(r);1N.B. that one does not sum over all rules in the grammar.3



where PrG(r) is the probability (weight) G assigns to rule r.The probability of a string according to grammar G isPrG(s) = X8p2parses(G;s)PrG(p)Since our grammars are for English text, our strings will always be sentences.The probability of a corpus of sentences, C, according to grammar G isPrG(C) = Ys2C PrG(s) (2)This de�nition makes the standard assumption that sentences occur independently.For convenience, most calculations are actually made in terms of the cross entropy ofa corpus, which is the negative log of its probability.Our interest in PCFGs lies in their usefulness as language models. For languagemodeling we wish to maximize our predictive ability, which means maximizing theprobability of a corpus, or, equivalently, minimizing its cross entropy. There exists afairly well-known algorithm [3{5] for tuning a PCFG's probabilities to maximize theprobability of a training corpus. The important properties of this algorithm, knownas the Inside-Outside (I-O) algorithm, are that it allows unsupervised training, itcan get stuck in local maxima, it is deterministic, and it approaches the maximumprobability settings asymptotically with repeated iterations through the training data.The I-O algorithm does not induce new rules, although it can e�ectively delete rulesby assigning them a probability of zero.2.2 PerformanceIf our learned grammars had 100% coverage, i.e., they could be expected to parseall sentences in a test corpus, then cross entropy would be the right performancemeasure. Unfortunately, it is di�cult to realize both perfect coverage and low crossentropy, and both are desirable properties for language models. Essentially, one mustchoose between inducing a very general grammar, which spreads probability thinlyover more sentences, or a grammar that parses fewer sentences, but assigns a higherprobability to the sentences that it does parse. Note that a single unparsable sentencemakes the cross entropy of the corpus in�nite (because the probability is zero).One can imagine many tradeo� functions for balancing coverage versus cross en-tropy but it is hard to argue convincingly for any particular one. Rather than selectingone at random, we measure our own performance in comparison with the performanceof the current industrial standard, a smoothed trigram language model2. Such mod-2A trigram model predicts the next word from the previous two, and assigns a probability to acorpus as the product of the probability of all words. A smoothed trigram model combines a trigrammodel with a bigrammodel (next word predicted from only the previous word) and a unigrammodel(next word predicted by its frequency in text). 4



els are guaranteed to have 100% coverage and they have performed extremely well aslanguage models for many years. They are serious competition, rather than a strawperson.We measure comparative performance by treating both models as componentsof an overall model, which is the smoothed combination of the the two. We assignboth models an initial weight of 0.5, and tune these values using the forward-backwardalgorithm on held-out test data. We measure performance as the �nal weight assignedto the grammar model, and call it �G. The �nal weight assigned to the trigram modelis �T = 1:0 � �G). A �G of 0.5 would indicate that the grammar and the trigramperformed identically well, overall.One way to think of this is that we are assigning each sentence an equal, �xedweight, and we are dividing that weight between the two models according to theprobability each model assigns the sentence. (Actually we use the probability times �Gand �T for the grammar and the trigram model, respectively.) Whichever model getsthe most weight is the better model. The forward-backward algorithm successivelyre-estimates the weights using the lambdas, and vice-versa.The key advantage of this measure is that it assigns a �nite value to each sentence,whereas cross entropy may assign an in�nite value, as it does when a sentence isunparsable. This makes cross entropy a \brittle" measure, as a single sentence of zeroor even near-zero probability probability can determine a grammar's performance foran entire corpus. Our grammar's coverage of test data is generally around 99:2�0:5%,so some sentences inevitably fail.Aside from this brittleness, we regard cross entropy as the right measure, andour �s track it faithfully. Other things being equal, any change in cross entropywill be mirrored by a change in �. If either model has superior cross entropy onevery sentence, its � will reach 1.0, indicating complete dominance. In addition, ourmeasure has the rather handy feature that, if the two models usually assign widelydisparate probabilities, each � may be read as the percentage of sentences for whichthe corresponding model is superior. Our two models meet this condition, most ofthe time, so it is a good approximate indicator for us.2.3 PCFG inductionStacked regression requires some existing means of induction to furnish the general-izers it needs. We discuss our induction scheme in detail elsewhere [6]. In skeletonform, there are two parts to PCFG induction: acquiring the rules, and setting theirprobabilities. In essence, we divide the process into corresponding phases, and handlethem separately.The rule acquisition phase is error-driven. It accepts an initial grammar, whichmay be empty, called the bias, and it extends the bias to cover sentences that it5



cannot initially parse. As we report elsewhere, we obtain the best performance whenwe can extend the grammar incrementally, adding fewer and shorter rules �rst. Weget this e�ect by sorting the input sentences, shortest �rst.Our procedure does not guarantee that a sentence can be parsed even after ruleacquisition. (Generally speaking, however, coverage of training data is > 99% afterthis learning, so there are few sentences for which it fails.) If the learner fails, that is,if the sentence remains unparsable, then no suggested rules are added to the grammar.There are two ways in which learning can fail. First, it could fail because ourconstraints on new rules simply do not allow some necessary rule or rules to besuggested. This seldom happens, as our constraints have migrated away from beingrigid, \yes-or-no" rules towards probabilistic preferences.Another way in which learning can fail is that so many new rules are generatedthat the parser is e�ectively swamped. It is not hard for a single sentence to generatethousands of new rules, doubling the size of the grammar, although clearly only verylimited information can be gleaned from any one sentence.) In this case, the learneraborts, discards the new rules, and indicates a failure. This bias the learner againstlearning from long sentences, which seems reasonable, as long sentences are harder tolearn from.The second phase, setting the probabilities, is a straightforward deployment ofthe Inside-Outside algorithm.3 ResultsResults reported in this section all use the basic induction algorithm described above,seeded with a hand-built bias grammar containing 600 rules. The training data usedwas a 300,000 word subset of the Brown Corpus of Tagged English [7], a collectionof articles, excerpts from books, and the like. Each word is tagged with its part ofspeech, e.g., noun, verb, etc. Our grammars operate on the tags alone, ignoring thewords entirely. Our subset of the corpus was created by �ltering out all sentences thathad more than 23 words or had undesirable words such as parentheses, headlines, orforeign words. A 10,000 word subset was reserved for testing.For comparison purposes, we provide the average performance of the basic induc-tion algorithm. We use the average because our grammar learning is dependent onsentence ordering, or, in other words, is not deterministic without a completely �xedsentence ordering. Consider two sentences of a given length, say A and B. Supposethat for A our learner will suggest rules that are also su�cient to parse B, but forB the learner would suggest a di�erent set. What rules the grammar ends up withdepends on which sentence occurs �rst. In �gure 1 we give average performance (the�) of the basic induction scheme, and the individual performance on 10 learning runsover randomized orderings of the corpus. (The shortest-�rst ordering was still, of6
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lambda lambda variance cross entropy coverage %basic 0.53235 0.000869081 2.74561 98.96smoothed 0.52857 0.000084159 2.7476 99.35added, 10 segs, l-o-o 0.61753 0.000079539 2.72856 99.36added, 10 segs, l-o-i 0.657562 0.000722075 2.7175 99.56added, 100 segs, l-o-i 0.72071 0.00005106 2.7017 99.66added, 25k segs, l-o-i 0.71114 0.0 2.70285 99.72Figure 2: Comparison of smoothing versus unsmoothed grammarscourse, preserved.) In all cases, we evaluate performance immediately after learningand after 10 iterations of training by the Inside-Outside algorithm, which in our ex-perience is enough to reveal any systematic di�erences among grammars, althoughperformance may continue to climb with further iterations.Figure 1 should give one a feel for the behavior of our grammars through thetraining process. In general, performance immediately following learning is poor, andincreases most rapidly for the �rst couple of training iterations. Performance curvesoccasionally cross, but there are no wild di�erences in the shape of the curves, norare there dips indicating overtraining. Overall, there is more variation in performancethan we would like, and it seems largely connected with the coverage of the learnedgrammar. Coverage ranges from 98.68 to 99.23% of total words parsed for thesegrammars, and is almost perfectly correlated to increased performance.3.1 Experiment 1Figure 2 summarizes the results for all our experiments. All results are averagesfrom 10 runs over randomized orderings, except as otherwise noted below. The en-try headed \smoothed" gives the graph of results for our \replication" of ordinarystacked regression, or at least our unsupervised learning approximation to it. Forthis experiment we divided the corpus into 10 equal sized pieces. Nine of these pieceswere used to generate grammars. The di�erent grammars were created by vary-ing the data available to each learning run. In each case, one of the 9 remainingpieces of training data was left out, so the learner saw only 80% of the data. Eachgrammar was then trained once, using the same 90% as was used for learning. Thegrammars were trained only once in order to allocate training time comparable to 10passes with a single grammar. Finally, smoothing parameters were chosen using theforward-backward algorithm on the reserved 10% of the data.The �rst two lines of the table in �gure 2 show that the smoothed grammars donot perform better than the \basic" scheme of learning over the whole corpus all at8



once. Actually, they perform somewhat worse, but not signi�cantly so.3.2 Experiment 2As we said earlier, our real hope for performance improvement lay in the idea of\adding" grammars together, so that rules distributed among the di�erent grammarscan cooperate in parsing a sentence. The technique relies on information gleaned bythe Inside-Outside algorithm, which provides a count for each rule, indicating howmany times it is used. I-O works by alternately using the rule probabilities and thetraining data to estimate the counts, and then re-estimating the probabilities fromthe counts. For our purposes, the key property of the counts is that they can act as acommon currency among grammars. Rule probabilities, which are the most obviousalternative, lack this property of interchangeability, making them unsuitable for ourpurpose.We add grammars together, then, by adding the rule counts.De�nition 1 The sum of n grammars, designated SG, is the grammar created bysumming the rule counts over the n grammars as follows.count(SG; r) =Xi count(Gi; r)where count maps the rule r to its count in grammar G.If a rule does not appear in some grammar, it has a count of zero. Probabilities forthe new grammar are calculated from the counts, using the same equation that theInside-Outside algorithm relies on. For a given non-terminal, NT , and some stringof terminals and non-terminals, �i, the probability of the rule NT ! �i can becalculated from the counts as follows.PrG(NT ! �i) = count(NT ! �i)=Xi count(NT ! �i) (3)In this experiment we added together the 9 untrained grammars generated inexperiment 1, and then trained them 10 times. Results are shown in �gure 2 underthe entry \added, 10 segs, l-o-o", for adding the grammars, splitting the data into 10segments, and \leave-one-out" rule induction. This penalizes the summing technique,as it has no chance to learn on 10% of the data, but as the table shows, performanceis still superior.3.3 Experiment 3In this experiment we alter the way we allocate the training data to learn the varyinggrammars that we subsequently add together. While the \leave-one-out" strategy of9
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0.00 2.00 4.00 6.00 8.00 10.00Figure 3: Performance of leave-one-in learning, for various segmentation values.learning has a long and honorable history in machine learning, and it is a very naturalstarting point, it does not seem the most promising for our problem. It is computa-tionally expensive and it does not scale well. By this we mean that increasing thesegmentation, i.e., the number of ways one divides the data, leave-one-out producesgrammars that look more and more alike, and, as variation appears to be essentialfor our needs, this is counter-productive. Instead we take the opposite approach toleave-one-out, and keep only a single segment for learning, rather than all but one.As before, we iteratively train the grammars only after they are added, as it is moree�cient to do so after, when a single pass through the data trains all new rules. Underthis scheme, which we call \leave-one-in", increasing the segmentation will tend to in-crease the variation among grammars. Moreover, the grammars are cheaper to learn,as fewer sentences are processed for each. Lastly, under leave-one-in, more sentencescontribute rules at a given segmentation number; in the limit, when one increases thesegmentation to the corpus size, all sentences get a chance to contribute rules. Incontrast, under leave-one-out some sentences may never trigger learning, and so willnever suggest rules, under any segmentation. Figure 3 shows results of leave-one-in10



learning at various segmentation settings, up to the limit case of segmenting the cor-pus into one-sentence chunks. As the �gure shows, performance does not increase upto the limit case, but appears to level o� around a segmentation of 100. Our presentbelief, as yet untested, is that this results from the loss of ordering information atvery high segmentations.The loss of ordering information comes about because each segment has very fewsentences. This, in turn, means that the grammar cannot develop incrementally.On the other hand, it also reduces the variance among grammars generated fromdi�erent orderings, as the variance column in �gure 2 shows. In the limit case, thereis no variation at all, as there is zero ordering information. We intend to furtherexplore both the levelling o� in performance and the bene�ts from ordering in thefuture.4 ConclusionWe have presented positive results from experiments in borrowing an idea fromstacked regression and adapting it to our own domain. Our experiments do notshow promising results from generic smoothing over multiple grammars, but mergingthem provides the synergy we were hoping for. Grammar merging relies on varietyamong the constituent grammars, which implies that \leave-one-out" learning will notprovide much mileage. For our application, \leave-one-in" is both computationallycheaper and more thorough in extracting information, as the learning is error-driven.One issue we have not discussed so far is the relative CPU cost of the variousschemes. The current version of the basic learning scheme takes about 7 hours for ruleacquisition and 1.5 hours for each training iteration. Since rule acquisition involvesthe same parsing as training, this means that about 5.5 hours are spent purely learningrules. The bad news is that for small segmentation levels, up to around 15, say, theincrease in CPU cost is linear, i.e., it takes about 10 times longer to learn the ruleswhen the segmentation is 10, whether the learning is leave-one-out or leave-one-in.(Training the rule probabilities remains about the same, as segmentation has no e�ecton training. The only increase in time comes from the increase in grammar size thatcomes with increased segmentation.) The reason is that rule learning is error-based,and for small segmentation levels, the error rate per segment does not signi�cantlydi�er from the error rate for the basic, unsegmented learner. At high segmentationlevels, say 100 and up, leave-one-out and leave-one-in behave di�erently. Leave-one-out continues to climb linearly in cost, as each learning pass comes closer to processingall of the data. For leave-one-in learning, the error rate per segment begins to drop,so performance cost likewise drops to less than linear. Note, also, that leave-one-outlearning parses the entire corpus approximately N � 1 times at a segmentation of N ,whereas leave-one-in parses it only once. 11



In our own environment, we have all the data available in batch form, and enoughcomputers to handle up to about 100 segments in parallel. This allows for very fastexperimentation. In an online environment, one would not expect to have either theseresources, or all the data available at once. Our results suggest a strategy such asthe following would be e�ective even in this more constrained environment. Incomingdata should be processed in chunks of a few hundred sentences. (For our data set, asegmentation of 100 means each learner sees about 250 sentences.) Sort the sentences,and use the basic learner and the bias grammar to acquire new rules. The learnedgrammar, which will use the new rules, is kept separate at all times. The new rulesare added after learning, and then the I-O algorithm is run over the learned grammarand the new data. I-O will compute new rule counts, which periodically should beused to re-estimate the rule probabilities.This strategy allows some incremental development from the chunking; it putsall rules in a single grammar to reap the bene�ts of cooperation; and it maintains arelatively high error-rate to drive continued learning. While overall the learning must,inevitably, be slower under this regime, only a few thousand sentences should su�ceto reach reasonable performance, and the scheme has the advantage of accomodatingarbitrarily large data sets.5 AcknowledgementsWe are grateful to Leslie Kaelbling for reading a draft of this paper and providing uswith constructive comments.
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