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Abstract. We present a preliminary study of several parser adaptation
techniques evaluated on the GENIA corpus of MEDLINE abstracts [1,
2]. We begin by observing that the Penn Treebank (PTB) is lexically
impoverished when measured on various genres of scientific and tech-
nical writing, and that this significantly impacts parse accuracy. To
resolve this without requiring in-domain treebank data, we show how
existing domain-specific lexical resources may be leveraged to augment
PTB-training: part-of-speech tags, dictionary collocations, and named-
entities. Using a state-of-the-art statistical parser [3] as our baseline, our
lexically-adapted parser achieves a 14.2% reduction in error. With oracle-
knowledge of named-entities, this error reduction improves to 21.2%.

1 Introduction

Since the advent of the Penn Treebank (PTB) [4], statistical approaches to nat-
ural language parsing have quickly matured [3, 5]. By providing a very large
corpus of manually labeled parsing examples, PTB has played an invaluable
role in enabling the broad analysis, automatic training, and quantitative evalu-
ation of parsing techniques. However, while PTB’s Wall Street Journal (WSJ)
corpus has historically served as the canonical benchmark for evaluating statis-
tical parsing, the need for broader evaluation has been increasingly recognized
in recent years. Furthermore, since it is impractical to create a large treebank
like PTB for every genre of interest, significant attention has been directed to-
wards maximally reusing existing training data in order to mitigate the need
for domain-specific training examples. These issues have been most notably ex-
plored in parser adaptation studies conducted between PTB’s WSJ and Brown
corpora [6–9].

As part of our own exploration of these issues, we have been investigating
statistical parser adaptation to a novel domain: biomedical literature. This lit-
erature presents a stark contrast to WSJ and Brown: it is suffused with domain-
specific vocabulary, has markedly different stylistic constraints, and is often writ-
ten by non-native speakers. Moreover, broader consideration of technical litera-
ture shows this challenge and opportunity is not confined to biomedical literature
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alone, but is also demonstrated by patent literature, engineering manuals, and
field-specific scientific discourse. Through our work with biomedical literature,
we hope to gain insights into effective techniques for adapting statistical parsing
to technical literature in general.

Our interest in biomedical literature is also motivated by a real need to im-
prove information extraction in this domain. With over 15 million citations in
PubMed today, biomedical literature is the largest and fastest growing knowl-
edge domain of any science. As such, simply managing the sheer volume of its
accumulated information has become a significant problem. In response to this,
a large research community has formed around the challenge of enabling auto-
mated mining of the literature [10, 11]. While the potential value of parsing has
often been discussed by this community, attempts to employ it thus far appear
to have been limited by the parsing technologies employed. Reported difficul-
ties include poor coverage, inability to resolve syntactic ambiguity, unacceptable
memory and speed, and difficulty in hand-crafting rules of grammar [12, 13].
Perhaps the most telling indicator of community perspective came in a recent
survey’s bleak observation that efficient and accurate parsing of unrestricted text
appears to be out of reach of current techniques [14].

In this paper, we show that broad, accurate parsing of biomedical literature
is indeed possible. Using an off-the-shelf WSJ-trained statistical parser [3] as our
baseline, we provide the first full-coverage parse accuracy results for biomedi-
cal literature, as measured on the GENIA corpus of MEDLINE abstracts [1, 2].
Furthermore, after showing that PTB is lexically impoverished when measured
on various genres of scientific and technical writing, we describe three methods
for improving parse accuracy by leveraging lexical resources from the domain:
part-of-speech (POS) tags, dictionary collocations, and named-entities. Our gen-
eral hope is that lexically-based techniques such as these can provide alternative
and complementary value to treebank-based adaptation methods such as co-
training [9] and sample selection [15]. Our lexically-adapted parser achieves a
14.2% reduction in error over the baseline, and in the case of oracle-knowledge
of named-entities, this reduction improves to 21.2%.

Section 2 describes the GENIA corpus in detail. In Section 3, we present
unknown word rate experiments which measure the coverage of PTB’s grammar
on various genres of scientific and technical writing. Section 4 describes our
methods for lexical adaptation and their corresponding effects on parse accuracy.
Section 5 concludes with a discussion challenges and opportunities for future
work.

2 The GENIA corpus

The GENIA corpus [1, 2] consists of MEDLINE abstracts related to transcrip-
tion factors in human blood cells. Version 3.02p of the corpus includes 19991 ab-
stracts (18,545 sentences, 436,947 words) annotated with part-of-speech (POS)

1 The reported total of 2000 abstracts includes repetition of article ID 97218353



tags and named-entities. Named-entities were labelled according to a corpus-
defined ontology, and the POS-tagging scheme employed is very similar to that
used in PTB (see Section 4.1).

Using these POS annotations and PTB guidelines [16], we hand-parsed 21
of these abstracts (215 sentences) to create a pilot treebank for measuring parse
accuracy. We performed the treebanking using the GRAPH2 tool developed for
the Prague Dependency Treebank. Initial bracketing was performed without any
form of automation. Following this, our baseline parser [3] was used to propose
alternative parses. In cases where hand-generated parses conflicted with those
proposed by the parser, hand-parses were manually corrected, or not corrected,
according to PTB bracketing guidelines. Our pilot treebank is publicly available3.

Subsequent to this, the Tsujii lab released its own beta version treebank,
which includes 200 abstracts (1761 sentences) from the original corpus. This
treebanking was performed largely in accordance with PTB guidelines (perhaps
the most significant difference being constituent labels NAC and NX were excluded
in favor of NP). Because there is no redundancy in the coverage of the Tsuijii lab’s
treebank and our own pilot treebank (and by chance, NAC and NX do not occur
in our pilot treebank either), we have combined the two treebanks to maximize
our evaluation treebank (see Table 3).

An additional note is required regarding our use of named-entities (Sec-
tion 4.3). Entity annotations (not available in the treebank) were obtained from
the earlier 3.02p version of the corpus. Any sentences that did not match be-
tween the two versions of the corpus (due to differences in tokenization or other
variations) were discarded. The practical impact of this was negligible, as only
25 sentences had to be discarded4.

3 Unknown Words

Casual reading of technical literature quickly reveals a rich, field-specific vocab-
ulary. For example, consider the following sentence taken from GENIA:

The study of NF-kappaB showed that oxLDLs led to a decrease of
activation-induced p65/p50 NF-kappaB heterodimer binding to DNA,
whereas the presence of the constitutive nuclear form of p50 dimer was
unchanged.

To quantitatively measure the size and field-specificity of domain vocabulary, we
extracted the lexicon contained in WSJ sections 2-21 and evaluated the unknown
word rate (by token) for various genres of technical literature. Results are given
in Table 1.

2 http://quest.ms.mff.cuni.cz/pdt/Tools/Tree Editors/Graph
3 http://www.cog.brown.edu/Research/nlp
4 Because our preliminary use of named-entities assumes oracle-knowledge, this exper-

iment was carried out on the development section only, thus only the development
section was reduced in this way.



Corpus Unknown Word Rate

WSJ sect. 24 2.7

Brown-DEV 5.8

Brown sect. J 7.3

CRAN 10.0

CACM 10.7

DOE 16.7

GENIA 25.5

Table 1. Unknown word rate on various technical corpora given WSJ 2-21 lexion.

Brown-DEV corresponds to a balanced sampling of the Brown corpus (see Ta-
ble 4). Section J of Brown contains “Learned” writing samples and demonstrated
the highest rate of any single Brown section. CRAN contains 1400 abstracts in
the field of aerodynamics, and CACM includes 3200 abstracts from Communica-
tions of the ACM [17]. DOE contains abstracts from the Department of Energy,
released as part of PTB. GENIA here refers to 333 abstracts (IDs 97449161-
99101008) not overlapping our treebank. As this table shows, unknown word
rate clearly increases as we move to increasingly technical domains. Annecdotal
evaluation on patent literature suggests its unknown rate lies somewhere between
that of DOE and GENIA.

While these results appear to indicate WSJ is lexically impoverished with
respect to increasingly technical domains, it was also necessary to consider the
possibility that the results were simply symptomatic of technical domains having
very large lexicons. If such were the case, we would expect to see these domains
demonstrate high unknown word rates even in the presence of a domain-specific
lexicon. To test this hypothesis, we contrasted unknown word rates on GENIA
using lexicons extracted from WSJ sections 2-21, Brown (training section from
Table 4), and from GENIA itself (1,333 abstracts: IDs 90110496-97445684)5.
Results are presented in Table 2.

Lexicon Size Unknown Word Rate

Brown 25K 28.2

WSJ 40K 25.5

Brown+WSJ 50K 22.4

GENIA 15K 5.3

Brown+WSJ+GENIA 60K 4.6

Table 2. Unknown word rate on GENIA using lexicons extracted from WSJ, Brown,
and GENIA.

5 While this set of abstracts does overlap the Tsujii treebank, this experiment was run
prior to the treebank’s release.



Although the unknown word rate in the presence of in-domain training for
GENIA (5.3%, Table 2) is nearly twice that of out-of-domain training (2.7%,
Table 1), suggesting a larger lexicon does indeed exist, it is also strikingly clear
that WSJ and Brown provide almost no lexical value to the domain: expanding
GENIAs lexicon by 45,000 new terms found in WSJ and Brown produced only a
meager 0.7% reduction in unknown word rate. Contrast this with the enormous
reduction achieved through using GENIA’s lexicon instead of the WSJ or Brown
lexicons (Table 2).

4 Parser Adaptation

In this section, we present three methods for parser adaptation motivated by
the results of our unknown word rate experiments (Section 3). The goal of
these adaptations is to help an off-the-shelf PTB-trained parser compensate
for the large amount of domain-specific vocabulary found in technical liter-
ature, specifically biomedical text. To accomplish this without depending on
in-domain treebank data, we consider three alternative (and less expensive)
domain-specific knowledge sources: part-of-speech tags, dictionary collocations,
and named-entities. We report on the results of each technique both in isolation
and in combination.

We adopt as our baseline for these experiments the publicly available Char-
niak parser [3] trained on WSJ sections 2-21 of the Penn Treebank. Our divi-
sion of the GENIA corpus into development and test sets is shown in Table 3.
Analysis was carried out on the development section, and the test section was
reserved for final evaluation. Parse accuracy was measured using the standard
PARSEVAL metric of bracket-bracket scoring, assuming the usual conventions
regarding punctuation [18]. Statistical significance for each experiment was as-
sessed using a two-tailed paired t-test on sentence-averaged f-measure scores.
Since our evaluation treebank excludes NX and NAC constituent labels in favor of
NP (Section 2), for all experiments (including baseline) we post-processed parser
output to collapse these label distinctions6. Results from our various experiments
are summarized in Table 5.

Final results of our adapted parser are given in Table 6. For comparison with
standard benchmarks, parser performance was also evaluated on WSJ section
23 and on Brown. Table 4 shows our division of the Brown corpus.

4.1 Using POS Tags

Part-of-speech tags provide an important data feature to statistical parsers [3,
5]. Since technical and scientific texts introduce a significant amount of domain-
specific vocabulary (Section 3), a POS-tagger trained only on everyday English
is immediately at a disadvantage for tagging such text. Indeed, our off-the-shelf

6 While PTB examples could be similarly pre-processed prior to training, thereby
reducing the search space while parsing, the reduction would be minor and would
mean giving up a potentially useful distinction in syntactic contexts.



Source Section Abstract IDs Sentences

Pilot Development 99101510-99120900 215

Tsujii Development 91079577-92060325 732

Tsujii Test 92062170-94051535 1004

Table 3. Division of the GENIA combined treebank into development and test sections.

POS-Train Development Test

Sentences 19637 2181 2425

Table 4. Brown corpus division. Training and evaluation sections were obtained from
Gildea [7]. The development (and final training) section was created by extracting
every tenth sentence from Gildea’s training corpus.

Adaptation F-measure Error reduction Significance

none 78.3 – –

lexicon 78.6 1.4 p = 0.002

no NNP 79.1 3.7 p = 0.002

train POS 80.8 11.5 p < 0.001

entities 80.9 12.0 p < 0.001

no NNP, train POS 81.5 14.7 p = 0.043

no NNP, train POS, entities 82.9 21.2 p < 0.001

Table 5. PARSEVAL f-measure scores on the GENIA development section using the
adaptation methods described in Section 4. Statistical significance of individual adap-
tations are compared against no adaptation, and combined adaptations are compared
against the best prior adaptation. As the p values indicate, all of the adaptions listed
here produced a significant improvement in parse accuracy.

Corpus F-measure Error reduction Significance

GENIA-unadapted 76.3 – –

GENIA-adapted 79.6 14.2 p < 0.001

Brown-unadapted 83.4 – –

Brown-adapted 84.1 4.1 p = 0.002

WSJ 89.5 – –

Table 6. Final PARSEVAL f-measure results on GENIA compared with scores on
Brown and WSJ sect. 23. In all cases, the parser was trained on WSJ sect. 2-21 with
the over-parsing parameter set to 21x over-parsing. Adapted GENIA results includes
POS adaptations only (oracle-type entity adaptation was not used). Adapted Brown
results use POS re-training on Brown train section.



PTB-trained parser achieves only 84.6% tagging accuracy on GENIA. Conse-
quently, our simple first adaptation step was to retrain the parser’s POS-tagger
on the 1,778 GENIA abstracts not present in the combined treebank (in addi-
tion to WSJ sections 2-21). This simple fix raised tagging accuracy to 95.9%.
Correspondingly, parsing accuracy improved from 78.3% to 80.8% (Table 5).

While such POS-retraining is a direct remedy to learning appropriate tags
for new vocabulary, it is only a partial fix to a larger problem. In particular, the
trees found in PTB codify a relationship between PTB POS tags and constituent
structure, and any mismatch between the tagging schemata used in PTB and
that used by our new corpus could result in misapplication or underutilization of
the bracketing rules acquired by the parser during training. To overcome this, it
is necessary to introduce an additional mapping step which converts between the
two POS tagging schemata. For closely related schemata, this mapping may be
trivial, but this cannot be assumed without a carefully analysis of tag distribution
and usage across the two corpora.

In the case of GENIA, the tagging guidelines used were based on PTB and
only subsequently revised (to improve inter-annotator agreement), so while dif-
ferences do exist, the problem is much less significant than the general case
of arbitrarily different schemata. Reported differences include treatment of hy-
phenated, partial, and foreign terms, and most notably, the distinction between
proper (NNP) and common (NN) nouns [2]. In order to quantitatively assess
the degree to which these and other revisions were made to the tagging scheme,
we extracted the POS distribution for 333 GENIA abstracts (as used in our
unknown word rate experiments from Section 3). From this distribution, we
learned that NNP almost never occurs in GENIA. This meant that our PTB-
trained parser would be unable to leverage PTB’s constituent structure examples
examples that involved proper nouns.

As a preliminary remedy, we simply relabeled all proper nouns as common
in PTB and re-trained the parser. This improved tagging accuracy to 96.4% and
parsing accuracy to 81.5% (Table 5). We should note, however, that this solution
is not ideal. While it does allow use of PTB’s NNP-examples, it does so at the
cost of confusing legitimate differences in the syntactic distribution of common
and proper nouns in English (as reflected by a 0.7% loss in accuracy on WSJ
evaluation when using this NN-NNP conflated training data). Clearly it would
be better if GENIA’s nouns could be re-tagged to preserve this distinction while
preserving inter-annotator agreement. A first step in this direction would be to
perform this re-tagging automatically based on determiner usage and GENIA’s
entity annotations, with success measured by the corresponding impact on parse
accuracy. This, along with a more careful analysis of tagging differences, remains
for future work.

We have also evaluated parser performance under the oracle condition of
perfect tags. This was implemented as a soft constraint so that the parser’s joint
probability model could overrule the oracle tag for cases in which no parse could
be found using it (cases of annotator error or data sparsity). Using the oracle
tag 99.8% of the time (in addition to other POS adaptations) had almost no



impact on parse accuracy, suggesting that further POS-related improvements in
parse accuracy will only come from the sort of careful analysis of the tagging
schemata discussed above.

4.2 Using a Domain-specific Lexicon

Another strategy we employed for lexical adaptation was the use of a domain-
specific dictionary. For biomedicine, such a dictionary is available from the Na-
tional Library of Medicine: the Unified Medical Language System (UMLS) SPE-
CIALIST lexicon [19]. Covering both general English as well as biomedical vo-
cabulary, the SPECIALIST lexicon contains over 415,000 entries (including or-
thographic and morphological variants). Entries are also assigned one of eleven
POS categories specified as part of the lexicon.

Given our finding from Section 4.1 that even oracle POS tags would do little
to improve upon our re-trained POS tagger, we did not make use of lexicon POS
tags. Instead, we restricted our use of the lexicon to extracting collocations. We
then added a hard-constraint to the parser that these collocations could not be
cross-bracketed and that each collocation must represent a flat phrase with no
internal sub-constituents. This approach was motivated by a couple of observa-
tions. On one hand, we observed cases where the parser would be confused by
long compound nouns; in desperation to find the start of a verb phrase, it would
sometimes use part of the compound to head a new verb phrase. Unfortunately,
WSJ sections 2-21 contain approximately 500 verb phrases headed by present-
participle verbs mistagged as nouns, thus making this bizarre bracketing rule
statistically viable. A second observation was the frequency with which we saw
the terms “in vivo” and “in vitro” (treebanked as foreign adjverbial or adjecti-
val collocations) mis-analyzed. Even in biomedical texts, “in” appears far more
often as a preposition than as part of such collocations, and as such, is almost
always mis-parsed in these collocational contexts to head a prepositional phrase.
Our hope was that by preventing such collocations from being cross-bracketted,
we could prevent this class of parsing mistakes.

We found use of lexical collocations did yield a small (0.3%) but statistically
significant improvement in performance over the unmodified parser (Table 5).
However, when combined with either POS or entity adaptations, the lexicon’s
impact on parsing accuracy was statistically insignificant. Our interpretation of
this latter result is that the primary limitation of the lexicon is coverage, despite
its size. That is, when either of the other adaptations were used, the lexicon
did not offer much beyond them. It is not surprising that oracle-knowledge of
entities (Section 4.3) provided greater coverage than the generic dictionary, and
the improvement in tagging from POS adaptation (sharper tag probabilities)
helped somewhat in preventing the verb-ification of some of the long compound
nouns. While the lexicon was the only adaptation to correctly fix “in vivo” type
mistakes, these phrases alone were not sufficiently frequent to provide a statisti-
cally significant improvement in parse accuracy on top of other adaptations. As
such, the primary value of this method would be in cases where such a lexicon
is available but POS tags and labelled entities are not.



4.3 Using Named-Entities

The primary focus of the GENIA corpus is to support training and evaluation of
automatic named-entity recognition. As such, a variety of biologically meaningful
terms have been annotated in the corpus according to a corpus-defined ontology.
Given the availability of these annotations, we were interested in considering the
extent to which they could be used as a source of lexical information for parser
adaptation.

Given the problems described earlier with regard to lexical collocations being
cross-bracketted by our off-the-shelf PTB-trained parser (Section 4.2), our hope
was that named-entities could be used similarly to lexical collocations in helping
to prevent this class of mistakes. To put it another way, we hoped to exploit
the correlation between named-entities and noun phrase (NP) boundaries. A
common preprocessing step in detecting named-entities is to use a chunker to
find NPs. Our approach was to do the reverse: to use named-entities as a feature
for finding NP boundaries.

Our initial plan was to use the same strategy we had used with dictionary
collocations: to add a hard-constraint to the parser that a named-entity could
not be cross-bracketed and had to represent a flat phrase with no internal sub-
constituents. However, we found upon closer inspection that the entities often
did contain substructure (primarily parenthetical acronyms), and so we relaxed
the flat-constituent constraint and enforced only the cross-bracketing constraint.

As a preliminary step, we evaluated the utility of this method using oracle-
knowledge of named-entities. By itself, this method was roughly equivalent to
POS re-training in improving parsing accuracy from 78.3% to 80.9% (Table 5).
But when combined with POS adaptations, use of named-entities provided an-
other significant improvement in performance, from 81.5% to 82.9%. Clearly this
is a promising avenue for further work, and it will be interesting to see how much
of this benefit from the oracle case can be realized when using automatically de-
tected entities.

5 Discussion

We have found only limited use of parsing reported to date for biomedical liter-
ature, thus it is difficult to compare our parsing results against previous work in
parsing this domain. To the best of our knowledge, only one other wide-coverage
parser has been applied to biomedical literature: Grover et al. report 99% cov-
erage using a hand-written grammar with a statistical ranking component [20].
We do not know of any quantitative accuracy figures reported for this domain
other than those described here.

For those interested in mining the biomedical literature, the next important
step will be assessing the utility of PTB-style parsing compared to other pars-
ing models that have been employed for information extraction. There has been
promising work in using PTB-style parses for information extraction by inducing
predicate-argument structures from the output parses [21]. It will be interest-
ing to see for the biomedical domain how these predicate-argument structures



compare to those induced by other grammar formalisms currently in use, such
as HPSG [22].

The next immediate extension of our work is to evaluate use of detected
named-entities in place of the oracle case described in Section 4.3, replacing the
current hard-constraint with a soft-constraint confidence term to be incorporated
into the parser’s generative model. Performance of named-entity recognition on
GENIA was recently studied as part of a shared task at BioNLP/NLPBA 2004.
The best system achieved 72.6% f-measure [23], though note that this task re-
quired both detection and classification of named-entities. As our usage of en-
tities does not require classification, this number should be considered a lower-
bound in the context of our usage model. We expect this level of accuracy should
be sufficient to improve parse scores, though how much of the oracle benefit we
can realize remains to be seen.

There are also interesting POS issues meriting further investigation. As dis-
cussed in Section 4.1, we would like to find a better solution to the lack of
proper noun annotations in GENIA, perhaps by detecting proper nouns using
determiners and labelled entities. More careful analysis of the differences be-
tween the PTB and GENIA tagging schemata is also needed. Additionally, there
are interesting issues regarding how POS tags are used by the parsing model.
Whereas the Collins’ model [5] treats POS tagging as an external preprocessing
step (a single best tag is input to the parsing model), the Charniak model [3]
generates tag hypotheses as part of its combined generative model, and thus
considers multiple hypotheses in searching for the best parse. The significance
of this is that other components of the generative model can influence tag se-
lection, and Charniak has reported adding this feature to his simulated version
of the Collins model improved its accuracy by 0.6% [24]. However, this result
was for in-domain evaluation; the picture becomes more complicated when we
begin parsing out-of-domain. If we have an in-domain trained POS-tagger, we
might not want a combined model trained on out-of-domain data overruling our
tagger’s predictions. One option may be introducing a weighting factor into the
generative model to indicate the degree of confidence assigned to our tagger
relative to the other components of the combined model.

Another issue for further work is the parsing of paper titles. In the GENIA
development section, only 28% of the titles are sentences whereas 71% are noun
phrases. This distribution is radically different than the rest of the corpus, which
is heavily dominated by sentence-type utterances. As headlines are even more
rare in our WSJ training data than titles are in GENIA (since WSJ contains
full article text), our parser performs miserably at utterance-type detection (i.e.
correctly labelling the top-most node in the parse tree): 58.6%. Correspondingly,
parse accuracy on titles is only 69.1%, which represents a statistically significant
decrease in accuracy in comparison to the entire development section (p = 0.038).
In investigating this, we noticed an oddity in GENIA in that most titles were
encoded in the corpus with an ending period that did not exist in the original
papers the corpus was derived from. By removing these periods, we improved
utterance-type detection to 77.9%. While parse accuracy rose to 72.0%, this



was statistically insignificant (p = 0.082). The solution we would like to move
towards is to respect the legitimate distributional differences between title and
non-title utterances and parameterize the parser differently for the two cases.
Generally speaking, such “contextual parsing” might allow us to improve parsing
accuracy more widely by parameterizing our parser differently based on where
the current utterance fits in the larger discourse. This example of period usage
in titles also highlights a broader issue that seemingly innocuous issues in corpus
preparation can have significant impact when parsing. As a further example of
this, the choice to (at times) separately tokenize term-embedded parentheses in
GENIA creates unnecessary attachment ambiguity in the resulting parenthetical
phrases. For example, in the phrase “C3a and C3a(desArg)”, “C3a(desArg)” is
tokenized as “C3a ( desArg )”, which produces ambiguity as to whether the
parenthetical should attach low (to the latter “C3a”) or high (to the compound
“C3a and C3a”). Issues such as these remind us to be mindful of the relationship
between corpus preparation and parsing, as well as downstream processing, and
that some issues which appear difficult to resolve while parsing might be handled
more easily at another stage in the processing pipeline.

We view biomedical and other technical texts as providing an interesting set
of challenges and questions for future parsing research. An interesting introduc-
tion to some of these challenges, supported by examples drawn from the domain,
can be found in [25]. A significant question for consideration is the degree to
which these challenges are related to domain knowledge vs. stylistic norms of
the genre. For example, [2] reports that whereas POS determination required
domain expertise, prepositional phrase (PP)-attachment could be largely deter-
mined even by non-biologists. Our own treebanking experience left us with the
opposite impression. For example, in the phrase “gene expression and protein
secretion of IL-6”, should the PP attach high (IL-6 gene expression and protein

secretion) or low (gene expression and IL-6 protein secretion)? Domain knowl-
edge appears to be necessary here for correct resolution. In contrast to this, POS
tags appear to be a distributional rather than a semantic concern. Issues like
this highlight how little we really understand currently about the parameters
of corpus variation. How do the frequencies of different syntactic constructions
vary by genre, and are there key structural variations at work? How do we ef-
fectively adapt parsers in response? These issues remain important topics for
future investigation.
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