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ABSTRACT
Recent work in supervised learning of term-based retrieval
models has shown significantly improved accuracy can of-
ten be achieved via better model estimation [2, 10, 11, 17].
In this paper, we show retrieval accuracy with Metzler and
Croft’s Markov random field (MRF) approach [20] can be
similarly improved via supervised learning. While the origi-
nal MRF method estimates a parameter for each of its three
feature classes from data, parameters within each class are
set via a uniform weighting scheme adopted from the stan-
dard unigram. We conjecture greater MRF retrieval accu-
racy should be possible by better estimating within-class pa-
rameters, particularly for verbose queries employing natural
language terms. Retrieval experiments with these queries on
three TREC document collections show our improved MRF
consistently out-performs both the original MRF and su-
pervised unigram baselines. Additional experiments using
blind-feedback [15] and evaluation with optimal weighting
demonstrate both the immediate value and further poten-
tial of our method.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Query For-
mulation

General Terms
Algorithms, Experimentation, Theory

1. INTRODUCTION
A document ranking method can be characterized by the

model it defines and how its parameters are estimated. With
classic term-based approaches, ranking is performed using a
linear model computed over a feature space of lexical terms
(often coupled with a document-specific prior) [24, 27, 29].
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This simple feature set is remarkably expressive: a vast num-
ber of rankings are possible given different settings of the in-
dividual term weights. In contrast to this modeling expres-
siveness however, strategies for estimating term weights have
traditionally been somewhat limited, and lack of statistical
learning means estimation accuracy cannot automatically
improve as more observational evidence becomes available.
Consequently, recent work has begun exploring supervised
approaches for estimating term-based models and shown sig-
nificant improvement can often be achieved [2, 10, 11, 17].

Of course, language conveys far more information than
simple term-based models are able to capture, and an im-
portant goal for long-term research is to develop richer mod-
els of language. A recent contribution in this direction was
the development of a Markov random field (MRF) approach
in which a standard unigram model is supplemented by two
additional classes of lexical features: contiguous phrases and
proximity [20]. While this approach was certainly not the
first to use phrases or proximity (cf. [4, 6, 7, 22] inter alia),
it incorporates them via a simple, principled framework that
is efficient to compute and has been shown to consistently
out-perform the standard unigram model across a range of
TREC document collections [2, 20]. An important detail of
the approach, however, is that although the weights for each
feature class are learned from data, feature weights within
each class are in fact estimated by the same uniform as-
sumption as the standard unigram. This means that MRF
estimation is similarly limited in modeling the varying im-
portance of query terms. Recognizing this limitation, how-
ever, also reveals a potential opportunity to improve MRF
accuracy by employing a similar supervised approach for pa-
rameter estimation as has already been successfully applied
to unigram modeling [2, 10, 11, 17].

In this paper, we show this strategy is indeed viable:
retrieval accuracy of the MRF model can be significantly
increased by applying supervised learning. Our main re-
sults show that in comparison to using either the original
MRF approach [20] or a supervised unigram model [17],
integrating supervised unigram model estimation into the
MRF yields significantly improved retrieval accuracy for ver-
bose queries across three TREC document collections (§3.2).
Our particular interest in supporting verbose queries is to
improve document retrieval underlying question answering
and other focused retrieval tasks. Additional experiments
performed show the strength of our improved MRF under
blind-feedback as well (§3.3). Finally, we evaluate model



performance under optimal weighting of phrase and prox-
imity features to demonstrate how their more accurate es-
timation also significantly improves retrieval (§3.4). This
last experiment shows 3% absolute improvement over the
baseline model can be achieved by assigning all phrasal and
proximity weight to a single key dependency. In total, our
results provide strong evidence that more accurate estima-
tion of feature weights within each lexical class can signifi-
cantly impact MRF model effectiveness. Results also moti-
vate additional work exploring supervised estimation of fea-
ture weights for phrasal and proximity features alongside
those of individual terms.

2. METHOD
This section describes our overall approach and its motiva-

tion. We begin by reviewing language model-based retrieval
(§2.1). We discuss how canonical unigram estimation makes
an implicit maximum-likelihood (ML) assumption that all
query terms are equally important to the underlying infor-
mation need, as well as why this is problematic for verbose
queries. We then review Regression Rank [17], which ap-
plies supervised learning in place of ML to estimate more
accurate, context-sensitive term weights (§2.2). Following
this, we review the MRF retrieval model (§2.3). We show
how parameter estimation for each of lexical feature class
also implicitly adopts ML and so is similarly problematic
for verbose queries. Finally, we describe how Regression
Rank can be used to overcome this limitation.

2.1 Unigram Modeling
Of the three classic term-based approaches to retrieval

[24, 27, 29], we adopt language modeling. Each observed
document D is assumed to be generated by an underly-
ing language model parameterized by ΘD. Given an in-
put query Q of length |Q|, we infer D’s relevance to Q as
the probability of observing Q as a random sample drawn
from ΘD. If we further assume bag-of-words modeling, ΘD

specifies a unigram distribution {θDw1 . . . θ
D
wN
} over the doc-

ument collection vocabulary V = {w1 . . . wN}. Finally, let-
ting fQw denote the frequency of word w in Q, the likelihood
of Q given D may be succinctly expressed as log p(Q|D) =P
w∈Q f

Q
w log θDw = fQ · logΘD. This formulation is some-

what cumbersome, however, since the relative importance
of query terms can only be expressed by their relative fre-
quency. Fortunately, we can arrive at an equivalent and
more convenient formulation by explicitly modeling the user’s
information need [12]. Specifically, we assume the observed
Q is merely representative of a latent query model param-
eterized by ΘQ = {θQw1 . . . θ

Q
wV
}, consistent with intuition

that the underlying information need might be verbalized
in other ways than Q. Query likelihood may then be re-

expressed in terms of ΘQ’s ML estimate dΘQ = 1
|Q|f

Q:

fQ · logΘD = |Q|dΘQ · logΘD rank
= −D(dΘQ||ΘD)

where
rank
= denotes rank-equivalence. This derivation shows

that inferring document relevance on the basis of Q’s like-
lihood given ΘD has an alternative explanation of ranking
based on minimal KL-divergence D(ΘQ||ΘD) between ΘQ

and ΘD (assuming ΘQ is estimated by ML). The significance
of this in our context is showing query likelihood’s implicit
ML assumption that all query tokens are equally important
to the underlying information need. While this assumption

appears fairly benign for keyword queries, it is problematic
for verbose queries because natural language terms greatly
vary in their degree of correlation with the core information
need. Fortunately, we see by this same token how retrieval
accuracy might be improved by better estimation.

While estimation of both ΘQ and ΘD impacts retrieval
accuracy, our focus in this paper is showing how better es-
timating ΘQ in the MRF model (§2.3) can improve its re-
trieval accuracy on verbose queries. Consequently, we adopt

standard Dirichlet-smoothed estimation of ΘD, inferring θ̂Dw
as a mixture of document D and document collection C ML

estimates [32]: θ̂Dw = λ
fD

w
|D| + (1 − λ)

fC
w
|C| , λ = |D|

|D|+µ , where

µ specifies a fixed hyper-parameter strength of the prior in
smoothing. This reduces parameterization of unigram lan-
guage modeling entirely to the query model ΘQ.

2.2 Regression Rank
This section reviews Regression Rank [17], which applies

supervised learning in place of ML to better estimate ΘQ

and thereby improve unigram retrieval accuracy. Given a
set of training queries with relevant documents, an effective
ΘQ is estimated for each training query (§2.2.1). Secondary
features correlated with ΘQ are introduced to enable gener-
alization (§2.2.2). Finally, a regression function is learned to
predict ΘQ for new queries using secondary features (§2.2.3).

2.2.1 Estimating the Query Model
A key idea of Regression Rank is that one can generalize

knowledge of successful query models from past queries to
predict effective query models for novel queries. In order to
do this, we must have query models to generalize from. This
requires a method for estimating a query model ΘQ for each
training query given examples of its relevant (and possibly
non-relevant) documents. Essentially we want to perform
massive explicit feedback [16] using training queries.

Following previous work [17], we apply grid search [21]
to estimate an effective query model ΘQ for each training
query. Estimating the query model based on metric perfor-
mance rather than likelihood avoids the issue of metric di-
vergence [21] and makes it easy to re-tune the system later
according to a different metric if so desired. A notewor-
thy detail concerns how the query model is estimated once
search is complete. The easiest solution would be to simply
pick the query model scoring highest according to a chosen
metric for evaluating retrieval accuracy (e.g. mean-average
precision). However, it turns out this is not the most effec-
tive strategy given the goal of enabling subsequent regression
across queries (§2.2.3). The problem with simply picking the
maximum is that the subsequent regression will be based on
a single sample that may be drawn from a sharply-peaked
local maximum on the metric surface. This would mean
that were we to attempt to recover this parameterization
via regression, small regression errors could yield a signifi-
cant drop in metric performance. Instead, we estimate ΘQ

as the expected query model dΘQ =
P
s[ Metric(Θs)Θs], a

sum in which each sample query model Θs is weighted by
the retrieval accuracy it achieved under the chosen accuracy
metric (the distribution is left unnormalized due to ranking
invariance). The intuition is this expectation should yield
parameter values which perform well on average, likely cor-
responding to a smoother portion of the metric surface.

Finally, to provide a more stable basis for regression, we
perform a non-linear normalization after which the expected



query models fully span the interval [0, 1]. Previous work [17]
reported this yielded consistent improvement.

2.2.2 Secondary Features
Given examples of past queries and corresponding inferred

query models ΘQ, Regression Rank uses secondary features
correlated with ΘQ and generalizing across queries to pre-
dict an appropriate ΘQ for each novel query. This section
summarizes the set of features used [17]. While existing fea-
tures have proven effective, their simplicity suggests further
improvement should be achievable via use of richer features.

Classic term frequency (tf) and document frequency (df)
statistics feature prominently in the model. Two Key Con-
cepts [2] features are also adopted: Google 1-gram tf [3] and
residual inverse-df (ridf) statistics. These tf , df , and ridf
statistics were collected from Gigaword [8] in addition to the
target retrieval collections to provide robust estimates for
general English. While we remove stop words prior to stem-
ming to avoid accidental stemming collisions with the stop
list, a stopword feature also provides a soft-test of whether
stemmed terms appear in the stop list (§3). Position fea-
tures correlate term importance with proximity to the start
or end of the query string. Lexical features seek correlation
of term importance with surrounding terms or punctuation;
while many lexical features are instantiated during feature
collection, few survive feature pruning (see below). A part-
of-speech (POS) feature is also used given POS tags from a
treebank parser [18] after detecting sentence boundaries [26].

Feature pruning discards any feature not observed at least
a parameter η times. We set η = 12 following [17]. This
significantly reduced the number of lexical features and gen-
erally helped filter out chance correlations from sparse fea-
tures. Non-sparse features like tf which occur for every term
were unaffected by pruning. Following previous work [9],
feature values were normalized to the interval [0, 1].

2.2.3 Inferring the Query Model via Regression
Given examples of target term weights paired with cor-

responding secondary features, the last stage of Regression
Rank is to predict the query model given the features. This
is accomplished via standard regularized linear regression.

Given N query terms in the training data, let Y = {y1:N}
denote the target term weights and X = {X1:N} the feature
vectors. Next, let d denote the number (i.e. dimension-
ality) of features and Xi = {x0

i , x
1
i . . . x

d
i } the ith feature

vector (with x0
j = 1 by definition for all j). Also, let W =

{w0w1 . . . wd} denote the weight vector with w0 as the bias
term. Assuming X and Y are drawn from the joint distribu-
tion p(X, y), our goal is to minimize expected loss given our
prediction f(X,W ): E(X,y)vp[L(f(X,W ), y)]. Lacking ora-
cle knowledge of p(X, y), we approximate this with the em-

pirical loss
PN
i L(f(Xi,W ), Yi) =

PN
i (yi−

Pd
j=1 wjx

d
i )

2 =

(Y − XW )T (Y − XW ) and minimize to find an optimal
weight vector W ∗. Conveniently, this sum of least squares
optimization problem has a closed form solution: W ∗ =
(XTX)−1XTY . However, since this ML solution often over-
fits, we alternatively revise the empirical loss formulation
as
PN
i L(f(Xi,W ), Yi) = (Y −XW )T (Y −XW ) + βWTW

where β defines a regularization parameter. This L2 (i.e.
ridge) regression also has a closed-form solution: W ∗ =
(βI + XTX)−1XTY , where I denotes the identity matrix.
Following previous work [17], we set β = 1.

2.3 The Markov Random Field Model
This section reviews the Markov random field (MRF) model

of retrieval [20]. Our presentation shows how parameter es-
timation for each lexical feature class embodies the same
implicit ML assumption underlying the standard unigram
model. Finally, we describe how Regression Rank can be
applied to more accurately estimate MRF term weights.

2.3.1 The Model
The MRF approach models the joint distribution PΛ(Q,D)

over queries Q and documents D. It is constructed from a
graph G consisting of a document node and nodes for each
query term. Nodes in the graph represent random variables
and edges define the independence semantics between the
variables. In particular, a random variable in the graph is in-
dependent of its non-neighbors given observed values for its
neighbors. Therefore, different edge configurations impose
different independence assumptions. The joint distribution
over the random variables in G is defined by:

PΛ(Q,D) =
1

ZΛ

Y
c∈C(G)

ψ(c; Λ)

where C(G) is the set of cliques in G, each ψ(·; Λ) is a
non-negative potential function over clique configurations
parameterized by Λ, and ZΛ =

P
Q,D

Q
c∈C(G) ψ(c; Λ) com-

putes the partition function. For document ranking, we
can skip the expensive computation of ZΛ and simply score
each document D by its unnormalized joint probability with
Q under the MRF. If we define our potential functions as
ψ(c; Λ) = exp[λcf(c)], where f(c) is some real-valued feature
function over clique values and λc is that feature function’s
assigned weight, we can compute the posterior PΛ(D|Q) as

PΛ(D|Q) =
PΛ(Q,D)

PΛ(Q)

rank
=

X
c∈C(G)

log ψ(c; Λ) =
X

c∈C(G)

λcf(c)

The graph G can be constructed in various ways depend-
ing on various possible assumptions regarding independence
between terms. In the case of full independence, query term
nodes share an edge with the document only. With sequen-
tial dependence, adjacent terms in the query share an ad-
ditional edge in G. Finally, assuming full dependence con-
structs an edge between each pair of query term nodes.
The choice of graph structure determines the set of cliques
present in G and thereby the set of features used in ranking.

2.3.2 The Features
All of the potential functions used in the MRF can be

expressed in the following generic form:

log ψi(c; Λ) = λifi(c) = λilog

»
(1− αDi )

Si(c)

|D| + αDi
Si(c)

|C|

–
where Si(c) denotes a given statistic computed for the given
clique c, |D| and |C| indicate respective token counts of the
document and entire collection (statistics other than term
frequency are only approximately normalized), and αDi =
µi

µi+|D| , where µi denotes a smoothing hyper-parameter spe-

cific to the potential function ψi(c; Λ) [32]. Note that use
of term frequency as the statistic Si computes the standard
Dirichlet-smoothed unigram (§2.1).

Potential functions are primarily distinguished by the par-
ticular statistic Si they employ. As mentioned earlier (§1),



the MRF model exploits three classes of lexical features: in-
dividual terms, contiguous phrases, and proximity. Each of
these corresponds to a distinct statistic Si: term frequency,
phrase frequency (i.e. “ordered” Indri #1 operator), and fre-
quency of a set of terms within some parameter N -sized
window (i.e. “unordered” Indri #uwN operator). The latter
two multi-term statistics’ corresponding potential functions
are applicable when some form of dependency is assumed
between query terms in the graph structure. In particu-
lar, the phrasal potential function is only applied to cliques
connecting contiguous query terms, whereas the proximity
potential function is applied to all multi-term cliques, con-
tiguous and non-contiguous alike. This means each pair of
contiguous query terms generates a clique c whose potential
function is defined by the product ψo(c)ψu(c) of ordered and
unordered potential functions.

Using these three classes of potential functions, the MRF
can be expressed as a three component mixture model com-
puted over term, phrase, and proximity feature classes:X
c∈C(G)

λcf(c) =
X
c∈T

λT fT (c) +
X
c∈O

λOfO(c) +
X

c∈O∪U

λUfU (c)

Each class effectively computes its own ranking function
which is then mixed with that of the other classes. For exam-
ple, we saw above that the term ranking function is equiva-
lent to the standard Dirichlet-unigram, meaning it embodies
the same implicit ML assumption discussed earlier (§2.1) of
estimating all class features as equally important to the un-
derlying information need. Since all three classes can be
expressed in the same generic form, phrasal and proximity
classes also embody the same assumption.

Another way to see this is that all features within the
same feature class are weighted by the same tied parameter
λi. This reflects a choice of potential functions used rather
than a general limitation of MRF modeling. We can gener-
alize the model by instead assuming a unique potential func-
tion ψci (c) for each clique rather than having a single func-
tion ψi(c) for each feature class: ψi(c) = λi

P
c∈i ψ

c
i (c) =P

c∈i λ
c
if
c
i . The class-wide weighting parameter λi is pre-

served here simply for convenience. This generalized model
is equivalent to the original under the condition that all
clique-specific potential functions ψci (c) within the same fea-
ture class adopt the same statistic Si and use the same tied
parameter λci = 1

|c∈i| . We argue for breaking this parameter

tying and applying supervised learning to estimate a unique
weight for each clique to better model context-sensitivity.

2.3.3 Estimation with Regression Rank
We have just discussed how the MRF term component

computes the standard Dirichlet-smoothed unigram. Con-
sequently, ΘQ is implicitly estimated by ML in the MRF as
well to yield a uniform distribution over Q’s terms. For ex-
ample, we saw above that each clique is implicitly assigned
uniform weight 1

|c∈i| . This is problematic for verbose queries

in which many terms appearing in the query are not strongly
related to the core information need and should be assigned
lower weight to improve retrieval effectiveness [2, 10]. A
similarly striking effect for dependencies is observed in §3.4.

Fortunately, we saw in §2.2 that ΘQ could be more accu-
rately estimated by applying supervised learning. Instead
of applying the MRF’s default ML estimation of ΘQ, we in-
stead use Regression Rank. We adopt the generalized MRF
having a distinct ψcT (c) for each clique; the same term fre-

Collection Content # Docs Topics
Robust04 Newswire 528,155 301-450, 601-700
W10g Web 1,692,096 451-550
GOV2 Web 25,205,179 701-850

Table 1: Documents and topics used in experiments.

quency statistic is used across terms but the parameter λci is
not tied. We then use our supervised estimate of ΘQ to set
λci values. This yields a more effective term component in
the MRF with the potential of improving the overall MRF
ensemble’s retrieval accuracy. We evaluate this in §3.

While we do not apply supervised estimation of phrasal
fO and proximal fU feature weights in this paper, results
in §3.4 motivate future work in this direction. This might
be achieved, for example, by applying Regression Rank to
predict MRF rather than unigram parameters and extend-
ing its secondary feature set accordingly. In §4, we further
discuss how the MRF model can be generalized beyond ways
in which it has been historically used, as well as how better
estimation of its parameters can enable us to take greater
advantage of its full modeling power.

3. EVALUATION
This section presents empirical results measuring the im-

pact of better MRF model estimation on document retrieval
accuracy. Retrieval experiments are conducted using three
TREC collections of varying size and content (Table 1). In
order to improve document retrieval for verbose queries like
those found in question answering and other focused re-
trieval tasks, evaluation primarily addresses use of TREC
description queries. We use the sequential dependence MRF
in our work since the full dependence MRF’s combinatorial
feature growth renders it intractable for use with verbose
queries. An interesting topic for future work will be per-
forming feature selection over all dependencies, sequential
and non-sequential alike (§4).

Documents are ranked using Indri [31], with rankings scored
using trec_eval 8.11. Mean-average precision (MAP) serves
as the primary metric, and results are as marked significant†

(p < .05), highly significant‡(p < .01), or neither accord-
ing a non-parametric randomization test computed by In-
dri’s ireval [28]. Experimental conditions reproduce those
of previous work [2, 17] for fair comparison. Queries were
stopped at query time using the same 418 word INQUERY
stop list [1] and then Porter stemmed [25]. The same Dirich-
let hyper-parameter µT = 1500 was used for term features
as well as Indri default values for µO and µU phrasal and
proximity hyper-parameters. A window size of 8 tokens was
used with the proximity feature.

3.1 Estimating MRF Component Weights
Recall that the MRF model uses three classes of lexi-

cal potential functions: individual terms ψT (c), contiguous
phrases ψO(c), and proximity ψU (c) (§2.3). These poten-
tial functions are parameterized by λT , λO, and λU weights
specifying the relative importance of each lexical class in the
overall MRF ensemble. In the original work [20], grid search
was used estimate class weights using title queries over sev-
eral document collections. Results showed an 85-10-5 mixing

1http://trec.nist.gov/trec_eval



Query Model Robust04 W10g GOV2
Title Base Unigram 25.32 19.49 29.61

Desc.

Base Unigram 24.51 18.61 25.22
MRF [20] 25.64 19.14 27.40
KC Unigram [2] 25.91 20.40 27.44
RR Unigram [17] 27.33 22.01 27.35

MRF+RR 28.48 ‡‡ 23.05 ‡† 29.51 ‡‡

Table 2: Main results compare MAP retrieval accu-
racy of baseline MRF [2] and Regression Rank [17]
models vs. their combination. Scoremr superscripts
and subscripts indicate statistical significance of the
combined model vs. the MRF (m) and Regression
Rank (r) baselines. Key Concepts [2] and cannonical
unigram accuracy are also reported.

Query Model Robust04 W10g GOV2
Title Base Unigram 48.11 31.20 56.24

Desc.

Base Unigram 47.63 39.20 52.21
MRF [20] 49.32 38.80 56.38
KC Unigram [2] 47.55 41.40 57.05
RR Unigram [17] 52.05 40.60 54.50

MRF+RR 54.30 ‡‡ 42.00 †† 57.18

Table 3: Precision at top 5 ranks corresponding to
same retrieval experiments shown in Table 2.

ratio (i.e. λT = 0.85, λO = 0.10, and λU = 0.05) generally
performed well across collections.

We begin our evaluation by testing the optimality of these
recommended λT , λO, and λU settings for verbose queries
since earlier work applied the MRF’s 85-10-5 mixing ratio
to them without testing it [2, 17]. In comparison to title
queries, verbose queries also exhibit more frequent syntactic
relations between adjacent terms, and semantically-related
terms often occur farther apart. Furthermore, the greater
effectiveness of the supervised unigram in comparison to the
maximum-likelihood (ML) unigram model used in the orig-
inal MRF experiments suggested the unigram component
here might merit additional weight in the mixture.

Consequently, we performed our own grid search over pos-
sible mixture ratios using development topics (§3.3). Despite
any premonitions to the contrary, the 85-10-5 mixing ra-
tio achieves MAP performance remarkably close to optimal:
24.79 vs. 24.93 for Robust04, 23.18 vs. 23.35 for W10g, and
26.68 vs. 27.01 for GOV2 (significance not reported). We
therefore adopt the 85-10-5 ratio in our subsequent experi-
ments for convenient comparison to previous work.

3.2 Estimating Term Feature Weights
This section presents our main results (Table 2) evaluat-

ing retrieval accuracy of the original MRF [20], Regression
Rank unigram [17], and our combined model. Following
previous work, Regression Rank was trained on each collec-
tion using 5-fold cross-validation. However, since the model
was developed using only Robust04 (topics 301-450), further
improvement of its performance and that of our combined
model may also be possible for W10g and GOV2 collections
via collection-specific model tuning.

Baseline performance of a standard unigram estimated by

ML for both title and description queries shows that ti-
tle queries consistently perform better than their descrip-
tion counterparts under ML estimation. While description
queries are more informative to a human reader, additional
terms introduced relative to title queries tend to individually
correlate more weakly with the query’s underlying core in-
formation need. Consequently, these terms should generally
be assigned lower weight in estimation. ML’s assumption
that all observed query terms are equally important fails to
do this, and retrieval accuracy suffers. The supervised esti-
mation of Key Concepts [2] and Regression Rank [17] models
addresses this limitation and is able to improve unigram re-
trieval accuracy as a result.

Our combined MRF model further exploits this better uni-
gram estimation by leveraging it in conjunction with phrasal
and proximity features. Across the three collections (Ro-
bust04, W10g, and GOV2), the combined model achieves
absolute MAP improvements of 2.84%‡ (p < .0000), 3.91%‡
(p = .0003), and 2.11% ‡ (p = .0003) respectively vs. the
original MRF. The number of queries improved, hurt or un-
changed for each collection respectively are 166/83/0, 67/31/2,
and 96/52/1. In comparison to the Regression Rank super-
vised unigram [17], absolute MAP improvements of 1.15% ‡
(p < .0000), 1.04%† (p = .0282), and 2.16%‡ (p < .0000) are
achieved. In this case, number of queries improved, hurt or
unchanged are 151/96/2, 50/48/2, and 82/66/1.

Precision at early ranks also shows signs of improvement.
For the top-5 retrieved documents, the combined model achieves
absolute improvements of 4.98% ‡ (p = .0001), 3.20% † (p =
.0329), and 0.80% respectively vs. the original MRF for
Robust04, W10g, and GOV2, respectively. The number of
queries improved, hurt or unchanged for each collection are
73/37/139, 32/17/51, and 36/38/85. In comparison to the
Regression Rank supervised unigram [17], absolute precision
improvements of 2.25% ‡ (p = .0042), 1.40%, and 2.68% are
achieved. Here, the number of queries improved, hurt or
unchanged are 52/29/168, 22/16/62, and 35/24/90.

3.3 Pseudo-relevance Feedback
This section reports retrieval accuracy of the original MRF

model [20], Regression Rank [17], and our combined model
under pseudo-relevance feedback (PRF). PRF was performed
using Indri [31], which implements a variation on Lavrenko’s
relevance models [15]. Only unigram feature weights are
re-estimated via PRF since previous work saw little benefit
from PRF for re-estimating dependency feature weights [19].
Ten feedback documents were used, with estimated feed-
back document models truncated to the most probable 50
terms per document. The feedback model mixture weight
was tuned on development topics: 301-450 for Robust04,
451-500 for W10g, and 701-750 for GOV2. This resulted
in feedback model weights of 0.6, 0.1, and 0.3 for the three
collections. Primary evaluation was performed on the re-
maining topics. Results appear in Table 4. Accuracy on all
topics is also shown and allows comparison to earlier non-
PRF results (Table 2).

For test set topics across the three collections, MAP ac-
curacy of the combined model was improved by 2.10%‡(p =
.0001), 1.42%† (p = .0338), and 2.55%‡ (p = .0001) absolute
vs. Regression Rank. The number of queries improved, hurt,
or unchanged for each collection were 64/33/2, 24/26/0,
and 58/41/1. In comparison to the baseline MRF model,
MAP increased by 0.21%, 3.20% † (p = .0252), and 0.54%,



Robust04 W10g GOV2
Model Test All Test All Test All
MRF [20] 38.92 30.09 19.99 20.02 32.37 30.26
RR [17] 37.03 30.52 21.77 22.48 30.36 28.96

MRF+RR 39.13‡ 31.82‡‡ 23.19†† 23.05‡ 32.91‡ 31.20‡

Table 4: MAP accuracy achieved by MRF [20], Re-
gression Rank [17], and combined models for test
and all topics using pseudo-relevance feedback. Sta-
tistical significance is reported as in Table 2.

with the number of queries improved, hurt, or unchanged
being 44/55/1, 30/20/0, and 49/50/1. As for comparative
precision at early ranks, we briefly summarize results. For
the top-5 retrieved documents, differences are not significant
with respect to the base MRF, but the combined model does
achieve significantly better precision than Regression Rank
across all collections (highly significant for Robust04).

Over all topics, the combined model is also seen to consis-
tently perform best. While highly significant MAP improve-
ment is achieved over both MRF (∆ = 1.73%, p = .0012)
and Regression Rank (∆ = 1.30, p < .0000) for Robust04,
we see an alternation of highly significant improvement over
MRF for W10g (∆ = 3.03, p = .0013) and over Regres-
sion Rank for GOV2 (∆ = 2.24, p = .0001) due to Regres-
sion Rank performing better for W10g while the base MRF
model performs better for GOV2. Lacking a means of pre-
dicting which base model will perform better for which col-
lection under PRF, the combined model is attractive in pro-
viding insulation from this alternation, performing at least
as well as the stronger base model in either case. When both
base models do perform well (e.g. Robust04), the combined
model is seen to out-perform both of them.

3.4 Phrasal and Proximity Feature Weights
Thus far, results have addressed the impact of better es-

timating MRF term weights. We now report the impact of
better estimating MRF phrasal and proximity parameters.
Previous work has also explored use of co-occurrence and
syntactic relationships in estimating these parameters for
sentence retrieval [5].

Previous work generating all possible term subsets of ver-
bose queries found retrieval accuracy could often be far im-
proved by reducing queries to six or fewer terms [10, 11].
This inspired us to try a similar experiment for phrasal and
proximity features (i.e. sequential dependencies). We evalu-
ated dependency reductions of the base MRF model in which
the default set of all sequential dependencies was similarly
reduced to a subset of at most six dependencies. This is
equivalent to performing a grid search [21] exploring possi-
ble binary assignments to these parameters. Other standard
settings of the base MRF were kept fixed: 85-15-5 compo-
nent weights along with the ML unigram weighting scheme.

Results in Table 5 show retrieval accuracy on Robust04
using a set of development topics (301-450). Statistical sig-
nificance is not reported but can be safely assumed for the
magnitude of improvements we discuss. The most striking
observation is that inclusion of only the single most-helpful
dependency improves MAP accuracy almost 3% absolute vs.
the baseline model’s default inclusion of all dependencies
(i.e. ML estimation of dependency parameters). Further-

Dependencies MAP P@5
all (baseline) 21.10 43.84
1-best 24.02 50.27
2-best 24.05 51.37
3-best 23.67 51.10
4-best 23.11 49.18
5-best 22.73 48.49
6-best 22.27 47.12
oracle 25.49 55.07

Table 5: MAP retrieval accuracy of MRF model [20]
under varying parameterization of phrasal and prox-
imity features. The Robust04 collection was used
with 146 description queries of length 20 or less
(topics 301-450). Parameterizations were restricted
to binary assignments of pair-wise sequential depen-
dencies. Statistical significance is not shown.

more, we see that adding a second best dependency provides
no additional benefit, and that use of any greater fixed-sized
subset of dependencies only serves to hurt performance vs.
use of the single best dependency. Previous work modeling
individual terms has similarly found that emphasizing one or
two key terms in verbose queries also has the most significant
impact on unigram retrieval accuracy [2]. It would be inter-
esting to measure the degree to which key terms predicted
in that work overlap with key dependencies found here. Re-
sults also show that if it were possible to simply identify
the group of six most helpful dependencies without regard
to their respective ordering, improvement of 1% could still
be achieved vs. the baseline. Finally, we see upper-bound
improvement of about 4% could be achieved by picking the
optimal number of best dependencies to use for each query.

Several details of this experiment merit cause for further
optimism regarding the retrieval benefit of better estimat-
ing phrasal and proximity parameters. The grid search we
performed considered only sequential dependencies; feature
selection or weighting over the full cross-product of query
dependencies (i.e. the full-dependency model) can only im-
prove upon these results. Similarly, our grid search was re-
stricted to binary assignments of parameters; more flexible
weighting might also yield greater improvement. We also
assumed fixed MRF component weights and ML estimation
of phrasal and proximity parameters; additional relaxation
of these assumptions may increase accuracy further.

3.5 Modeling Phrases vs. Proximity
This section describes a final simple experiment studying

the effect of modeling ordered phrases vs. proximity. While
previous work has shown these two distinct types of fea-
tures provide complementary benefit to retrieval accuracy,
we show here that at least in the case of modeling pair-wise
sequential dependencies, nearly identical performance can
be achieved across collections by modeling proximity only.
Specifically, we replace the ordered #1 Indri operator with
the unordered #uw2 proximal operator and leave other model
settings unchanged. Results are shown in Table 6.

While proximity is still being matched at two different
window sizes, results suggest the ordering-restriction is un-
necessary under settings in which the MRF model is typ-
ically used in practice. Earlier work on biterm modeling



Feature Used Robust04 W10g GOV2
ordered #1 25.64 19.14 27.40
unordered #uw2 25.61 18.95 27.20

Table 6: MAP retrieval accuracy of the sequential-
dependency MRF [20] on verbose queries using all
topics. The standard MRF feature testing ordering
of query term dependencies (#1) is seen to have neg-
ligible impact vs. order-ambivalent matching (#uw2).
Usual 85-15-5 component weights, unigram weight-
ing, proximal #uw8 features, and ML estimation of
phrasal and proximal parameters is used.

similarly showed small differences in accuracy when employ-
ing ordering-restricted and ordering-ambivalent models [30].
This raises several interesting questions. Do phrasal vs.
proximity features really provide distinct value, or are we
merely observing a graduated effect of proximity at differ-
ent window sizes? Important named-entities and colloca-
tions being matched may simply occur rarely enough in re-
versed order that the unordered feature approximates the
ordered feature with reasonable accuracy. Would modeling
a broader range of window sizes simultaneously be useful
with smaller window size suggesting stronger dependencies?
Will the utility of distinctly modeling phrases vs. proximity
become more clearly marked as we more fully estimate the
MRF model, using longer and non-sequential dependencies
and abandoning ML estimation of feature weights? We plan
to investigate these and related issues in future work.

4. DISCUSSION
We began this paper by emphasizing the distinction be-

tween model and estimation in evaluating a document rank-
ing method’s effectiveness. Lexical retrieval models are ac-
tually remarkably expressive but have typically not been es-
timated to their full potential. While recent work in learning
to rank [9] has demonstrated a variety of new and effective
retrieval models, the more sophisticated estimation tech-
niques and additional features that typically go into these
new models can also alternatively be employed to better es-
timate existing lexical models and function as a layer atop
classic search engines [2, 10, 11, 17].

Consider the model and estimation method underlying
classic language modeling [24] and probabilistic approaches
[29]. Both can be viewed as constrained log-linear models
adopting a specific feature set and restrictions on parame-
ters. Unigram modeling can be viewed as a log-linear model
in which the set of permissible parameterizations Λ is re-
stricted to the probability distribution ΘQ and the feature
set F consists solely of the (log) document model ΘD:

log p(Q|D) ∝ ΘQ ·ΘD = Λ · F

Building on the derivation in [13], we can similarly express
the probabilistic approach as:

log
p(D|Q, r)
p(D|Q, r̄) = |D|ΘD · log p(w|Q, r)

p(w|Q, r̄) = F · Λ

another constrained log-linear model where r and r̄ denote
relevant and non-relevant term distributions. Historically it
has been a point of contention which of these two mod-
els should be preferred [14, 23]. However, if we accept

Lavrenko’s argument for dropping |D| feature scaling on the
grounds that concatenating a document with itself ought not
to double its relevance score [14], both models utilize nearly
identical features, differing by only a log factor, and are in
fact rank-equivalent under equal parameterization. In short,
we see the two approaches are constrained not by their mod-
els but by their fixed estimation strategies. Less constrained
estimation would unlock greater modeling power.

We view the MRF approach (§2.3) as defining another
such linear model which is more expressive than the ways it
which has typically been used. We have discussed at length
how the MRF has historically assumed one weight parame-
ter per feature class: λT , λU , and λO. While parameter ty-
ing within each feature class certainly simplifies estimation,
modeling power is reduced, and we have seen how break-
ing this parameter tying indeed has a positive effect on re-
trieval accuracy. The MRF variants for full independence,
sequential dependence, and full dependence similarly provide
a means of enforcing constraints on model sparsity to sim-
plify estimation, but they represent only three fixed options
out of an infinite space of possible continuous parameter-
izations. While it is impractical to model an exponential
number of features at retrieval time, off-line methods for
feature selection and estimation can be explored and subse-
quently applied to dynamically select and weight the most
important features at run-time. Adopting the general linear
model perspective of the model has the further benefit of en-
abling us to exploit the large body of existing techniques for
maximizing such models, including recent work specifically
targeting maximization of ranking metrics [9].

5. CONCLUSION
This paper addressed generalization and better estima-

tion of Metzler and Croft’s Markov random field (MRF) [20]
approach to document retrieval. While the original MRF
method estimated a parameter for each feature class from
data, we showed how parameters within each class were im-
plicitly estimated using the same maximum-likelihood as-
sumption employed with the standard unigram. Because
this scheme does not model context-sensitivity, its use par-
ticularly limits retrieval accuracy with verbose queries in
which many terms appearing in the query are not strongly
related to the core information need and so ought to be
assigned lower weight. By employing supervised estima-
tion instead, however, we showed this deficit could be reme-
died. Retrieval experiments conducted with verbose queries
on three TREC document collections showed our improved
MRF consistently out-performs both the original MRF and
the supervised unigram model. Additional experiments us-
ing blind-feedback and evaluation with optimal weighting
demonstrate both the immediate value and further poten-
tial of performing more accurate MRF model estimation.
Future work will explore broader supervised estimation of
the MRF model, addressing phrasal and proximity parame-
ters in conjunction with term parameters.
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