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Abstract

We present a new document retrieval approach com-
bining relevance feedback, pseudo-relevance feedback,
and Markov random field modeling of term interaction.
Overall effectiveness of our combined model and the
relative contribution from each component is evaluated
on the GOV2 webpage collection. Given 0-5 feedback
documents, we find each component contributes unique
value to the overall ensemble, achieving significant im-
provement individually and in combination. Compara-
tive evaluation in the 2008 TREC Relevance Feedback
track further shows our complete system typically per-
forms as well or better than peer systems.

Introduction
User queries can be understood as surrogates for un-
derlying information needs. While we might assume
the information needs are fairly well-defined, the corre-
sponding queries are often terse and incomplete. Conse-
quently, performing retrieval strictly on the basis of an
observed query often yields low retrieval accuracy and
especially poor recall. A common strategy for address-
ing this is to infer additional details regarding the infor-
mation need given a set of documents either known or
thought to be relevant. When the user provides one or
more such feedback documents in addition to his query,
we have the scenario known as relevance feedback (RF).

This paper presents a strategy for effectively lever-
aging varying amounts of feedback (documents): none
(a.k.a. ad hoc retrieval), one, a few, or many. One tech-
nique we employ, pseudo-relevance feedback (PRF), au-
tomatically induces additional feedback documents and
uses them to further expand the query (Lavrenko &
Croft 2001; Zhai & Lafferty 2001). Although PRF has
been primarily investigated with ad hoc retrieval, it has
the potential for greater effectiveness in the RF setting
since explicit feedback improves system ranking for au-
tomatically identifying related documents. Alongside
PRF, we also investigate the benefit of modeling term
interactions in the RF scenario. Specifically, we adopt
Markov random field (MRF) modeling of sequential de-
pendencies between terms (Metzler & Croft 2005).

∗An earlier version of this paper appeared in the TREC
2008 Conference Notebook.

Given these two techniques, PRF and MRF mod-
eling, we evaluate the benefit from applying each in-
dividually and in combination across varying RF con-
ditions. Given 0-5 feedback documents, we find each
component contributes unique value to the overall en-
semble, achieving significant improvement individually
and in combination. Additional experiments using RF
in absence of MRF or PRF yield results consistent with
community wisdom that a little feedback can make a
big difference. Finally, comparative evaluation of our
complete system in the 2008 TREC Relevance Feed-
back track shows our approach typically performs as
well or better than peer systems.

Method

This section describes our overall approach. After
briefly summarizing our combined model, we pro-
ceed to review the individual techniques employed:
query-likelihood (Lafferty & Zhai 2001), relevance and
pseudo-relevance feedback (Lavrenko & Croft 2001),
and Markov random field modeling of sequential term
dependencies (Metzler & Croft 2005).

Model Summary

Given an input query Q and feedback documents F ,
our overall method may be summarized as follows:

0. Unigram document models ΘD are estimated for each
document via Dirichlet smoothing (Equation 3)

1. A unigram query model ΘQ is estimated from Q via
maximum-likelihood (Equation 2)

2. A unigram RF model ΘF is estimated as the average
document model over the set of positive (i.e. rele-
vant) feedback documents (Equation 4)

3. An improved unigram query model ΘQ′

is produced
by linearly mixing ΘQ and ΘF models (Equation 6)

4. ΘQ′

is used as the unigram component fT in the MRF
model to yield P ′

Λ(D|Q) (Equation 11)

5. A unigram psuedo-relevance model ΘP is estimated
based on P ′

Λ(D|Q) (Equation 12)

6. The PRF unigram likelihood ΘP · ΘD is linearly
mixed with the P ′

Λ(D|Q) MRF model (Equation 14)



Query-Likelihood

We adopt the query-likelihood (Ponte & Croft 1998)
paradigm for information retrieval. In this language
model (LM) approach, we assume each observed docu-
ment D (of |D| words) is generated by an underlying
LM parameterized by ΘD (the document model). Given
an input query Q (of |Q| words), we infer D’s relevance
to Q as the probability of observing Q as a random
sample drawn from ΘD . Assuming bag-of-words, ΘD

specifies a unigram distribution {θD
w1
. . . θD

wN
} over the

collection vocabulary V = {w1 . . .wN}. Finally, let-
ting fQ

w denote the frequency of word w in Q, query-
likelihood can be expressed in log form as:

log p(Q|D) =
∑

w∈Q

fQ
w log θD

w = fQ · logΘD (1)

where the final dot product is taken over the entire
collection vocabulary (equivalent since fQ

w = 0 for all
terms not observed in the query).

While this formulation of query-likelihood is perfectly
valid, incorporating lexical statistics from feedback doc-
uments into it is cumbersome since the relative impor-
tance of terms can only be expressed through repetition.
To address this, Equation 1 can be generalized by as-
suming the observed Q is merely representative of a la-
tent query model parameterized by ΘQ = {θQ

w1
. . . θQ

wV
},

consistent with intuition that the underlying informa-
tion need might be verbalized in other ways besides Q.
Query likelihood may then be re-expressed in terms of

ΘQ’s maximum-likelihood (ML) estimate Θ̂Q = 1
|Q|
fQ

fQ · logΘD = |Q| Θ̂Q · logΘD rank
= −D(Θ̂Q||ΘD) (2)

This shows inferring document relevance on the basis
of P (Q|D) is equivalent to ranking according to mini-
mal KL-divergence D(ΘQ||ΘD) when ΘQ is estimated
by ML (Lafferty & Zhai 2001). Intuitively, better re-
trieval can be achieved by forgoing strict equivalence
with Equation 1 and instead seeking more accurate in-
ference of ΘQ. This is where relevance feedback fits in:
it can be leveraged in conjunction with the observed
query to better estimate ΘQ.

Regarding ΘD , we apply standard Dirichlet smooth-
ing to estimate it as a mixture between document D
and collection C (of |C| words) ML estimates (Zhai
& Lafferty 2004; Zaragoza, Hiemstra, & Tipping 2003;
Lease & Charniak 2008):

θ̂D
w = λ

fD
w

|D|
+ (1 − λ)

fC
w

|C|
, λ =

|D|

|D|+ µ
(3)

where µ specifies hyper-parameter strength of the prior.

Relevance Feedback

Given a query, our retrieval model (Equation 2) infers
relevance on the basis of similarity between (our es-
timates of) query and document models, ΘQ and ΘD.
While we have thus far focused on document ranking for
a given query, let us now consider the other direction of

query formulation. Given a set of relevant documents R
that match a user’s information need, the optimal query

model ΘQ
? under Equation 2 will exhibit greater similar-

ity to R’s latent document models ∀D∈RΘD than those
of other documents. This suggests that given partial
knowledge of R in the form of |F| feedback documents
where F ⊆ R, ΘQ might be estimated on the basis of
similarity to F . For example, a simple idea would be to
estimate ΘQ as the average document model over the
set of positive (i.e. relevant) feedback documents:

Θ̂F =
1

|F|

∑

D∈F

ΘD (4)

While the classic Rocchio method (Rocchio & others
1971) also incorporates negative feedback (γ term):

~qr = α ~q0 + β
1

Nr

Nr∑

i

~di − γ
1

Nr̄

Nr̄∑

i

~di (5)

negative feedback has typically been found to be far less
useful than positive feedback, and so we omit it com-
pletely in our system. Since retrieval time is typically
proportional to the number of terms used, a common
efficiency heuristic is to approximate ΘF by its kF most
likely terms and re-normalize1.

Although the approach in Equation 4 does provide
broader lexical coverage of R than available in the
original query string, it suffers from a different prob-
lem. Whereas Q tends to closely focus on the core in-
formation need, the average feedback document model
may diverge from it since documents in F likely discuss
many topics. Rocchio’s α ~q0 mixing term helps prevent
such drift, and we adopt the same solution here by in-
ferring ΘQ on the basis of both the original query and
the feedback documents in the form of a linear mixture:

ΘQ′

= (1 − λF )ΘQ + λF ΘF (6)

Despite the simplicity of this approach, recent studies
have shown it comparable to more sophisticated strate-
gies (Balog, Weerkamp, & de Rijke 2008; Yi & Allan
2008). Consequently, we adopt it here in our work.

Combining Equations 1, 2, and 6, we see that uni-
gram feedback can be equivalently interpreted as a mix-
ture of query models used in the original ranking func-
tion (Equation 1) or as a mixture of ranking functions:

P (Q|D)
rank
= logΘD ·ΘQ′

= logΘD · [(1 − λF )ΘQ + λF ΘF ]

= (1 − λF )[ logΘD · ΘQ] + λF [ logΘD · ΘF ]

rank
= (1 − λF )D(ΘQ||ΘD) + λF D(ΘF ||ΘD)

However, once we move away from unigram modeling
to perform MRF modeling instead, we will see that this
dual interpretation is no longer applicable.

1Since Equation 2 is a linear model, ranking is invariant
under any scaling of the weight vector and so normalization
does not affect ranking. However, if we wish to later use ΘF

in some mixture model, choice of kF will have a side-effect
on mixture weight unless normalization is performed.



The Markov Random Field Model

The Markov random field (MRF) approach (Metzler &
Croft 2005) models the joint distribution PΛ(Q,D) over
queries Q and documents D. It is constructed from a
graph G consisting of a document node and nodes for
each query term. Nodes in the graph represent random
variables and edges define the independence semantics
between the variables. In particular, a random variable
in the graph is independent of its non-neighbors given
observed values for its neighbors. Therefore, different
edge configurations impose different independence as-
sumptions. The joint distribution over the random vari-
ables in G is defined by:

PΛ(Q,D) =
1

ZΛ

∏

c∈C(G)

ψ(c; Λ) (7)

where C(G) is the set of cliques in G, each
ψ(·; Λ) is a non-negative potential function over
clique configurations parameterized by Λ, and ZΛ =∑

Q,D

∏
c∈C(G) ψ(c; Λ) computes the partition function.

For document ranking, we can skip the expensive com-
putation of ZΛ and simply score each document D by
its unnormalized joint probability with Q under the
MRF. If we define our potential functions as ψ(c; Λ) =
exp[λcf(c)], where f(c) is some real-valued feature func-
tion over clique values and λc is that feature function’s
assigned weight, the posterior PΛ(D|Q) is computed as:

PΛ(D|Q) =
PΛ(Q,D)

PΛ(Q)

rank
=

∑

c∈C(G)

log ψ(c; Λ)

=
∑

c∈C(G)

λcf(c) (8)

The graph G can be constructed in various ways de-
pending on various possible assumptions regarding in-
dependence between terms. In the case of full indepen-
dence, query term nodes share an edge with the docu-
ment only. With sequential dependence, adjacent terms
in the query share an additional edge in G. Finally,
assuming full dependence constructs an edge between
each pair of query term nodes. The choice of graph
structure determines the set of cliques present in G and
thereby the set of features used in ranking. We use the
sequential dependence MRF in our work since the full
dependence model is expensive to compute due to its
combinatorial feature growth and provides only slight
improvement in accuracy (Metzler & Croft 2005).

All of the potential functions used in the MRF can
be expressed in the following generic form:

log ψi(c; Λ) = λilog

[
(1 − αD

i )
Si(c)

|D|
+ αD

i

Si(c)

|C|

]
(9)

where Si(c) denotes a given statistic computed for the
given clique c, |D| and |C| indicate respective token
counts of the document and entire collection (statistics

other than term frequency are only approximately nor-
malized), and αD

i = µi

µi+|D| , where µi denotes a smooth-

ing hyper-parameter specific to the potential function
ψi(c; Λ) (Zhai & Lafferty 2004). Note that use of term
frequency as the statistic Si computes the standard
Dirichlet-smoothed unigram (Equation 3).

Potential functions are primarily distinguished by the
particular statistic Si they employ. The MRF model ex-
ploits three classes of lexical features: individual terms,
contiguous phrases, and proximity. Each of these corre-
sponds to a distinct statistic Si: term frequency, phrase
frequency (i.e. “ordered” Indri #1 operator), and fre-
quency of a set of terms within some parameter N -sized
window (i.e. “unordered” Indri #uwN operator). The
latter two multi-term statistics’ corresponding poten-
tial functions are applicable when some form of depen-
dency is assumed between query terms in the graph
structure. In particular, the phrasal potential func-
tion is only applied to cliques connecting contiguous
query terms, whereas the proximity potential function
is applied to all multi-term cliques, contiguous and non-
contiguous alike. This means each pair of contiguous
query terms generates a clique c whose potential func-
tion is defined by the product ψo(c)ψu(c) of ordered and
unordered potential functions.

Using these three classes of potential functions, the
MRF can be expressed as a three component mix-
ture model computed over term, phrase, and proximity
feature classes. Omitting clique parameterization and
computation of the partition function, we can see that
each class effectively computes its own ranking function
which is then mixed with that of the other classes:

PΛ(Q,D) ∝ λT fT + λOfO + λUfU (10)

Note that unigram likelihood (Equation 2) can be
equivalently formulated as an MRF in which λT = 1
and λO = λU = 0. This means an improved unigram
model ΘQ′

(e.g. better estimated via feedback) can be
used in place of the MRF’s standard fT unigram model:

P ′
Λ(D,Q) ∝ λT [ΘQ′

· logΘD] + λOfO + λUfU (11)

Pseudo-Relevance Feedback

PRF is quite similar to RF except that now we must
factor in our uncertainty regarding each feedback docu-
ment’s relevance to the query. While our original setup
in Equation 4 made a simplifying assumption that all
feedback documents were equally relevant, this estimate
can be improved by accounting for varying degree of
relevance across the feedback set. The straightforward
way to accomplish this is to generalize from the simple
average of Equation 4 to instead compute an expecta-
tion respecting some arbitrary estimate p(D|Q) of feed-
back document relevance with respect to the query Q:

ΘP = ED∼p(D|Q)[Θ
D] =

∑

D∈C

p(D|Q) ΘD (12)

where C denotes the document collection. Recall
the MRF model defines a joint distribution PΛ(Q,D)



expressed unnormalized in Equation 10. While we
could compute the full partition function to normalize
PΛ(Q,D) over the entire document collection, this is
unnecessary unless we want to use the entire collection
for feedback. Besides the large computational cost this
would incur, there is diminishing return and increasing
harm from query drift as we start sifting through lower
ranks. Instead, we can simply normalize with respect
to the set of PRF documents P only:

PN
Λ (D|Q) =

PΛ(Q,D)∑
D∈P PΛ(Q,D)

(13)

The expected PRF document model can then be easily
computed by Equation 12 above. As with RF, a com-
mon efficiency heuristic is to approximate ΘP by its kP

most likely terms and re-normalize. The original esti-
mate of ΘQ is also typically mixed with the ΘP , similar
to what was done with explicit feedback (Equation 6).

When using PRF in conjunction with the MRF
model, we must specify how ΘP is mixed with original
model: query model mixing (i.e. in the fT component)
or ranking function mixing. We adopt Indri’s formu-
lation (Metzler et al. 2005) incorporating PRF at the
level of the ranking function:

P ′′
Λ(D|Q) = λP [ logΘP· ΘD] + (1−λP )P ′

Λ(D|Q) (14)

using P ′
Λ(D|Q) as defined in Equation 11. Note PRF is

limited here to unigram modeling; we do not estimate
dependency statistics from PRF for revising fO and fU

components since previous work has shown little benefit
from doing so (Metzler & Croft 2007a).

Evaluation

This section describes evaluation performed in develop-
ing and testing our model. Table 1 provides a complete
listing of all model parameters and identifies which re-
main fixed in our experiments. We follow previous work
in setting MRF proximity parameters for window size
wproximity and Dirichlet smoothing µ proximity.

Track Protocol and Metrics

Model evaluation was performed as part of our partic-
ipation in the 2008 TREC Relevance Feedback Track.
A goal of the track was to establish strong baselines
for current RF techniques under varying amounts of
explicit feedback:

A: no feedback (i.e. ad hoc retrieval)

B: 1 relevant document

C: 3 relevant and 3 non-relevant documents

D: 10 judged documents

E: large amounts of feedback (40-800 documents)

Each feedback set was included as a subset of its larger
successors. Retrieval experiments were conducted on
the GOV2 webpage collection (25,205,179 documents)
with 264 title-field queries drawn from topics of 2004-
2006 Terabyte tracks (TREC topics 701-850) and the

Component Parameter Value

Unigram µ 1700

Relevance Feedback
λF varied
kF varied

MRF

λT varied
λO varied
λU 1−λT −λO

w proximity 8
µ proximity 4000

Pseudo-rel Feedback
λP varied
kP 50
|P| 10

Table 1: Parameters of our combined model.

2007 Million Query track (50 and 214 topics, respec-
tively). Documents chosen for feedback achieved the
highest median retrieval ranks in the earlier track from
which the topic was drawn using the best run submitted
by participating groups. All odd-numbered and some
even-number Terabyte topics were excluded from the
test set and so available for model development; evalua-
tion on test topics was blind. Top-2500 document rank-
ings were submitted for official runs though reported
results include top-1000 ranked documents only.

Cumulative metric performance across topics is gen-
erally computed by a simple (arithmetic) average over
per-query metric performance. The one exception,
geometric-mean average precision (gmap), adopts the
geometric mean instead in order to focus metric at-
tention on difficult topics. Primary metrics used were
(arithmetic-mean) average precision (AP) and top-10
precision (P@10), as reported by trec_eval 8.12. Be-
sides gmap, we also report R-Precision (rprec): pre-
cision after R documents retrieved, where R is the
number of relevant documents for each topic. Results
marked as significant†(p < .05), highly significant‡(p <
.01), or neither reflect agreement between a two-sided
paired t-test and random shuffling statistics computed
by Indri’s ireval (Smucker, Allan, & Carterette 2007).

Experimental Setup

Indri (Strohman et al. 2004) formed the basis of our
retrieval model. Since Indri does not provide a facility
for performing RF, however, we estimated the feedback
model ΘF externally. Queries were stopped at query
time using a 418 word INQUERY stop list (Allan et al.
2000) and then Porter stemmed3. Recall that term pair
features fO and fU from the dependency model (Equa-
tion 10) correspond to co-occurrence statistics tracking
pairs of words occurring consecutively or within some
proximity of one another. It is worth noting that Indri
replaces stopwords with out-of-vocabulary tokens and
so use of stopwords does not affect distance between
terms in computed co-occurrence statistics.

2http://trec.nist.gov/trec_eval
3http://www.tartarus.org/martin/PorterStemmer



Model A B C D
Unigram 29.18 ‡30.84 †31.94 ‡33.49
PRF 32.50‡ 32.47 ‡34.32‡
MRF 32.04‡ 32.55† ‡34.61‡ ‡35.62‡
MRF+PRF 35.28‡ 34.78‡ 35.37† ‡36.66‡

Table 2: (Mean) average precision achieved by different
model configurations on development topics. Parame-
terization is consistent with Table 3 except kF = 150
is used with all feedback runs. Statistical significance
is reported by prefix † and ‡ comparing against cell to
left (i.e. less feedback), while suffix compares PRF &
Unigram, MRF & Unigram, and MRF+PRF & MRF.

For model development, track protocol did not spec-
ify which documents to use for feedback with non-test
topics. While it would have been ideal to choose docu-
ments achieving high rank under ad hoc retrieval, mir-
roring testing conditions, we simply took feedback doc-
uments for each topic according to their order in the col-
lection assessments. Initially we tried evaluating cross-
validated performance over different choices of feedback
documents, but we ended up abandoning this practice
due to time constraints. Since our RF method made
no use of negative-feedback, our choice of feedback in-
volved only relevant documents. For condition D, we
always used 5 relevant documents rather than vary the
number per topic as in testing conditions. Finally, with
condition E we simply used all relevant documents un-
der an assumption that once so many feedback doc-
uments were available, the exact number would make
little difference. We did not test this assumption, how-
ever, and so it bears some scrutiny in future work.

Tuning was performed with feedback documents in-
cluded in evaluation due to a misinterpretation of
track protocol. This led to selection of parameter set-
tings which likely overfit feedback. Despite the non-
optimality of this tuning process, our development set
results presented below do properly exclude feedback
documents and so support useful analysis. Of the 98
topics originally used in tuning, we discard three which
have fewer than five non-feedback relevant documents,
leaving 95 for evaluation. Since condition E tuning used
all relevant documents as feedback, its performance can
only be evaluated with feedback documents included.
Consequently, this condition is largely omitted in our
discussion of development set results.

Results on Development Topics

Parameter values were tuned on development topics via
grid search (Metzler & Croft 2007b), resulting in the
values listed in Table 3. Results in Table 2 compare
baseline unigram AP with that achieved using PRF,
MRF, and MRF+PRF combined. While results gen-
erally show improvement with increasing feedback, the
more interesting observation is seeing how the tech-
niques contribute and interact with one another in com-
parison to the baseline and across feedback conditions.

Model Run kF λF λT λO λP

Unigram

A2 - - - - -
B2 250 0.3 - - -
C2 150 0.45 - - -
D2 150 0.45 - - -
E1 250 0.8 - - -

MRF+PRF

A1 - - 0.8 0.1 0.5
B1 150 0.3 0.8 0.1 0.75
C1 150 0.45 0.9 0.05 0.85
D1 150 0.45 0.9 0.05 0.85

Table 3: Parameterization of submitted runs.
MRF+PRF values are identical for C and D conditions.

Model Run AP gmap rprec P@10

Unigram

A2 29.18 21.65 35.27 54.32
B2 ‡30.84 24.22 36.52 †57.89
C2 †31.94 26.27 38.14 57.37
D2 ‡33.49 27.89 39.15 ‡62.42

MRF+PRF

A1 35.28‡ 26.42 38.62 60.53‡
B1 34.78‡ 28.33 39.50 61.68†
C1 35.37‡ 29.88 40.15 61.89†
D1 †36.66‡ 31.42 40.88 †64.95

Table 4: Unigram and MRF+PRF results on develop-
ment topics. Statistical significance is reported for map
and P@10 (only) by prefix † and ‡ comparing against
cell above (i.e. less feedback) while suffix compares Un-
igram vs. MRF+PRF runs using comparable feedback.

With the sole exception of PRF in condition C, we
see PRF and MRF modeling each yield improvement
over the baseline across feedback conditions with MRF
seen to be the stronger of the two. Furthermore, the
MRF+PRF combination achieves additional significant
improvement over MRF modeling alone. With condi-
tion E (not shown), neither PRF or the MRF model im-
proved over the baseline. However, this result is incon-
clusive since condition E development set results could
not be evaluated without retrieved feedback documents.

We submitted nine runs for official evaluation: five
unigram runs with no PRF (conditions A-E) and four
MRF+PRF runs (conditions A-D). No MRF+PRF run
was submitted for condition E since we did not observe
improvement from either technique on this condition
while tuning. Evaluation of these runs on development
topics is shown in Table 4. Results show fairly steady
improvement for unigram runs but a more complicated
picture for MRF+PRF runs. While gmap, rprec, and
P@10 steadily improve with increasing feedback, map is
flat for A-C. However, both map and P@10 show signifi-
cant improvement for condition D.

Results on Test Topics

Official test set results of our nine submitted runs are
presented in Table 5. AP, gmap, rprec, and P@10

metrics are computed on top-1000 retrieved documents



Model Run AP gmap rprec P@10 MTC statAP

Unigram

A2 13.43 4.05 16.48 24.19 4.90 22.91
B2 ‡17.09 6.99 21.09 †29.68 6.22 29.07
C2 ‡19.50 8.66 22.66 32.58 7.03 32.27
D2 20.64 9.29 23.67 †36.45 7.06 32.16
E1 †24.75 14.85 27.35 ‡48.06 7.32 35.00

MRF+PRF

A1 21.46‡ 11.43 25.15 32.90 5.64 27.99
B1 20.96 11.63 23.56 33.87 6.04 29.59
C1 †22.96† 13.68 25.75 37.74 7.01 33.87
D1 †24.29† 14.93 27.42 40.65 7.03 32.16

Table 5: Official results of our runs on test topics. Run name indicates feedback condition and run ID. Runs are
divided between unigram results (no PRF) and results using both sequential dependency (Metzler & Croft 2005) and
PRF. Statistical significance is reported for map and P@10 (only) following the same conventions used in Table 4.

MAP P@10
System A-E B-E A-E B-E
Brown 22.89 23.23 38.64 40.08
uogRF09 22.08 22.68 38.64 38.87
UAmsR08PD 19.22 20.09 35.17† 36.78†
UIUC 18.55† 20.09† 32.52† 35.41‡
FubRF08 17.85† 19.58† 32.26† 35.48‡

Table 6: Relative performance achieved by five of the top systems participating in the track, as measured by simply
averaging official test topic MAP and P@10 accuracies across the various feedback conditions. Column “A-E”
averages over all conditions, while “B-E” compares feedback conditions only (no ad hoc “A”). Statistical significance
measured by a two-tailed paired t-test is reported for low significance† (p < .05) and high significance‡ (p < .01).
Refer to track overview (Buckley & Robertson 2008) and official track results for more detailed comparison.

with relevance determined by NIST pooling assessment
of 31 Terabyte track topics. The pool consisted of the
top-10 ranked documents from each run submitted by a
participant. MTC corresponds to Carterette et al.’s Min-
imal Test Collections evaluation algorithm (Carterette,
Allan, & Sitaraman 2006) and statAP comes from
Aslam and Pavlu’s statistical MAP estimation proce-
dure (Aslam, Pavlu, & Yilmaz 2006); both algorithms
were used in the TREC Million-query Track. Million-
query track runs also contributed to the pools.

Unigram results demonstrate a steady improvement
in retrieval accuracy across all but gmap metrics with
growing amounts of feedback. The largest AP improve-
ment is seen moving to condition E’s large amount of
feedback (4.11% absolute over condition D). A slightly
smaller AP improvement is seen as we go from ad hoc
retrieval (condition A) to condition B’s having a single
relevant document: 3.66% (absolute). Similar trend-
ing is observed with high-rank P@10 retrieval: 11.61%
and 5.49%, respectively (absolute). Regarding gmap,
it would seem topic drift caused by feedback is seen
to hurt performance, though this loss diminishes as
greater feedback reduces drift. However, note a very
different trend is observed on development topics (Ta-
ble 4). It may be this difference in trends is simply a
byproduct of differences between how feedback docu-
ments were selected for development and test sets. On
the other hand, since official evaluation only included

top-10 ranked documents in pooling, assessment may
have been biased in favor of easier topics for which many
relevant documents would be seen early in the ranked
list. Finally, since we use identical system configura-
tions for conditions C and D (which provide compara-
ble feedback), we expected their results should be quite
similar, and MTC and statAP metrics bear this out.

MRF+PRF results are less clear in that condition B
results decline in comparison to ad hoc retrieval under
AP and rprec metrics while improving under all other
metrics. This drop is likely due to overfitting. Other-
wise similar trends are observed: we see improvement
with increasing feedback. C and D conditions again ap-
pear roughly comparable, with D generally performing
slightly better except in the case of statAP.

Table 6 shows the relative strength of our overall
system in comparison to four other competitive sub-
missions to the 2008 TREC Relevance Feedback track.
Performance is summarized by simply averaging official
MAP and P@10 accuracies across the various feedback
conditions. Results shown our system typically per-
formed as well or better than peer systems. The track
overview (Buckley & Robertson 2008) and official track
results provide more thorough details for comparison.

Conclusion

This paper investigated combination of relevance feed-
back, pseudo-relevance feedback, and Markov random



field modeling techniques for document retrieval. Using
a large web collection, we evaluated an overall combina-
tion strategy while assessing the contribution from each
component in presence of the others. Given 0-5 feed-
back documents, we found each component contributed
unique value to the overall ensemble, achieving signifi-
cant improvement individually and in combination.

Comparative evaluation in the 2008 TREC Relevance
Feedback track further showed our complete system
typically performs as well or better than other peer
systems. Use of proximity (e.g. features in our MRF
model) and/or PRF was generally seen to help in com-
bination with RF across participating systems that em-
ployed one or the other. Use of negative feedback (e.g.
via Rocchio) generally provided little benefit. Interest-
ingly, all of the competitive participants’ systems dis-
played some form on non-monotonicity in accuracy with
increasing feedback. While we identified problems with
overfitting in our system, as discussed earlier, it remains
to be seen this is explanation is sufficient in general.

While our approach to RF in this paper was lim-
ited to unigram feedback, future work will explore term
dependency selection from feedback documents for in-
corporation into fO and fU MRF components (Equa-
tion 10). Previous work has shown little benefit from
PRF dependency modeling (Metzler & Croft 2007a),
but RF dependency modeling may prove to be more
helpful. We would also like to explore use of RF in con-
junction with supervised unigram modeling (Bendersky
& Croft 2008; Lease, Allan, & Croft 2009).
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